连续密度隐马尔可夫混合模型的非参数贝叶斯推理

Q Mathematics
Najmeh Bathaee, Hamid Sheikhzadeh
{"title":"连续密度隐马尔可夫混合模型的非参数贝叶斯推理","authors":"Najmeh Bathaee,&nbsp;Hamid Sheikhzadeh","doi":"10.1016/j.stamet.2016.10.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In this paper, we present a non-parametric continuous density Hidden Markov mixture model (CDHMMix model) with unknown number of mixtures for blind segmentation or clustering of sequences. In our presented model, the emission distributions of HMMs are chosen to be Gaussian with full, diagonal, or tridiagonal covariance matrices. We apply a </span>Bayesian approach to train our presented model and drive the inference of our model using the Monte Carlo Markov Chain (MCMC) method. For the multivariate Gaussian emission a method that maintains the tridiagonal structure of the covariance is introduced. Moreover, we present a new sampling method for hidden state sequences of HMMs based on the </span>Viterbi algorithm that increases the mixing rate.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"33 ","pages":"Pages 256-275"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.10.003","citationCount":"2","resultStr":"{\"title\":\"Non-parametric Bayesian inference for continuous density hidden Markov mixture model\",\"authors\":\"Najmeh Bathaee,&nbsp;Hamid Sheikhzadeh\",\"doi\":\"10.1016/j.stamet.2016.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>In this paper, we present a non-parametric continuous density Hidden Markov mixture model (CDHMMix model) with unknown number of mixtures for blind segmentation or clustering of sequences. In our presented model, the emission distributions of HMMs are chosen to be Gaussian with full, diagonal, or tridiagonal covariance matrices. We apply a </span>Bayesian approach to train our presented model and drive the inference of our model using the Monte Carlo Markov Chain (MCMC) method. For the multivariate Gaussian emission a method that maintains the tridiagonal structure of the covariance is introduced. Moreover, we present a new sampling method for hidden state sequences of HMMs based on the </span>Viterbi algorithm that increases the mixing rate.</p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"33 \",\"pages\":\"Pages 256-275\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2016.10.003\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572312716300351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312716300351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种具有未知混合数的非参数连续密度隐马尔可夫混合模型(CDHMMix模型),用于序列的盲分割或聚类。在我们提出的模型中,hmm的发射分布被选择为高斯分布,具有全、对角或三对角协方差矩阵。我们应用贝叶斯方法来训练我们提出的模型,并使用蒙特卡洛马尔可夫链(MCMC)方法来驱动我们模型的推理。对于多元高斯发射,提出了一种保持协方差三对角结构的方法。此外,我们提出了一种基于Viterbi算法的hmm隐状态序列采样方法,提高了混合速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-parametric Bayesian inference for continuous density hidden Markov mixture model

In this paper, we present a non-parametric continuous density Hidden Markov mixture model (CDHMMix model) with unknown number of mixtures for blind segmentation or clustering of sequences. In our presented model, the emission distributions of HMMs are chosen to be Gaussian with full, diagonal, or tridiagonal covariance matrices. We apply a Bayesian approach to train our presented model and drive the inference of our model using the Monte Carlo Markov Chain (MCMC) method. For the multivariate Gaussian emission a method that maintains the tridiagonal structure of the covariance is introduced. Moreover, we present a new sampling method for hidden state sequences of HMMs based on the Viterbi algorithm that increases the mixing rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methodology
Statistical Methodology STATISTICS & PROBABILITY-
CiteScore
0.59
自引率
0.00%
发文量
0
期刊介绍: Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信