{"title":"中性4-流形表面升力成2-Grassmann束","authors":"Naoya Ando","doi":"10.1016/j.difgeo.2023.102073","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>A twistor lift of a space-like or time-like surface in a neutral hyperKähler 4-manifold with zero </span>mean curvature vector is given by a (para)holomorphic function, which yields (para)holomorphicity of the </span>Gauss maps of space-like or time-like surfaces in </span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></msubsup></math></span><span><span> with zero mean curvature vector. For a space-like or time-like surface in an oriented neutral 4-manifold with zero mean curvature vector such that both twistor lifts belong to the kernel of the curvature tensor, its (para)complex quartic differential is holomorphic. If both twistor lifts of a time-like surface with zero mean curvature vector have light-like or zero </span>covariant derivatives<span>, then either the shape operator with respect to a light-like normal vector field vanishes or all the shape operators of the surface are light-like or zero. Examples with the former (resp. latter) property are given by the conformal Gauss maps of time-like surfaces of Willmore type with zero paraholomorphic quartic differential (resp. time-like surfaces in 4-dimensional neutral space forms based on the Gauss-Codazzi-Ricci equations).</span></span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102073"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The lifts of surfaces in neutral 4-manifolds into the 2-Grassmann bundles\",\"authors\":\"Naoya Ando\",\"doi\":\"10.1016/j.difgeo.2023.102073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>A twistor lift of a space-like or time-like surface in a neutral hyperKähler 4-manifold with zero </span>mean curvature vector is given by a (para)holomorphic function, which yields (para)holomorphicity of the </span>Gauss maps of space-like or time-like surfaces in </span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></msubsup></math></span><span><span> with zero mean curvature vector. For a space-like or time-like surface in an oriented neutral 4-manifold with zero mean curvature vector such that both twistor lifts belong to the kernel of the curvature tensor, its (para)complex quartic differential is holomorphic. If both twistor lifts of a time-like surface with zero mean curvature vector have light-like or zero </span>covariant derivatives<span>, then either the shape operator with respect to a light-like normal vector field vanishes or all the shape operators of the surface are light-like or zero. Examples with the former (resp. latter) property are given by the conformal Gauss maps of time-like surfaces of Willmore type with zero paraholomorphic quartic differential (resp. time-like surfaces in 4-dimensional neutral space forms based on the Gauss-Codazzi-Ricci equations).</span></span></p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"91 \",\"pages\":\"Article 102073\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000992\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000992","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The lifts of surfaces in neutral 4-manifolds into the 2-Grassmann bundles
A twistor lift of a space-like or time-like surface in a neutral hyperKähler 4-manifold with zero mean curvature vector is given by a (para)holomorphic function, which yields (para)holomorphicity of the Gauss maps of space-like or time-like surfaces in with zero mean curvature vector. For a space-like or time-like surface in an oriented neutral 4-manifold with zero mean curvature vector such that both twistor lifts belong to the kernel of the curvature tensor, its (para)complex quartic differential is holomorphic. If both twistor lifts of a time-like surface with zero mean curvature vector have light-like or zero covariant derivatives, then either the shape operator with respect to a light-like normal vector field vanishes or all the shape operators of the surface are light-like or zero. Examples with the former (resp. latter) property are given by the conformal Gauss maps of time-like surfaces of Willmore type with zero paraholomorphic quartic differential (resp. time-like surfaces in 4-dimensional neutral space forms based on the Gauss-Codazzi-Ricci equations).
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.