抛物型问题的hp不连续Galerkin时间步进

Dominik Schötzau , Christoph Schwab
{"title":"抛物型问题的hp不连续Galerkin时间步进","authors":"Dominik Schötzau ,&nbsp;Christoph Schwab","doi":"10.1016/S0764-4442(01)02186-3","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the <em>hp</em>-version of the discontinuous Galerkin (DG) time-stepping method for linear parabolic problems with non-symmetric elliptic spatial operators. We derive new analyticity estimates for the exact solutions by means of semigroup techniques. These estimates allow us to show that the <em>hp</em>-DG time-stepping method can resolve start-up singularities at exponential rates of convergence.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1121-1126"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02186-3","citationCount":"0","resultStr":"{\"title\":\"hp-discontinuous Galerkin time-stepping for parabolic problems\",\"authors\":\"Dominik Schötzau ,&nbsp;Christoph Schwab\",\"doi\":\"10.1016/S0764-4442(01)02186-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the <em>hp</em>-version of the discontinuous Galerkin (DG) time-stepping method for linear parabolic problems with non-symmetric elliptic spatial operators. We derive new analyticity estimates for the exact solutions by means of semigroup techniques. These estimates allow us to show that the <em>hp</em>-DG time-stepping method can resolve start-up singularities at exponential rates of convergence.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 12\",\"pages\":\"Pages 1121-1126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02186-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑非对称椭圆空间算子线性抛物问题的间断Galerkin (DG)时间步进方法的hp-版本。利用半群技术给出了精确解的新的解析性估计。这些估计使我们能够证明hp-DG时间步进方法可以以指数收敛速度解决启动奇异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
hp-discontinuous Galerkin time-stepping for parabolic problems

We consider the hp-version of the discontinuous Galerkin (DG) time-stepping method for linear parabolic problems with non-symmetric elliptic spatial operators. We derive new analyticity estimates for the exact solutions by means of semigroup techniques. These estimates allow us to show that the hp-DG time-stepping method can resolve start-up singularities at exponential rates of convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信