{"title":"优化胶囊的点源照射以获得最大的均匀性","authors":"Oliver Breach , Peter Hatfield , Steven Rose","doi":"10.1016/j.hedp.2022.101007","DOIUrl":null,"url":null,"abstract":"<div><p><span>Inertial Confinement Fusion involves the implosion of a spherical capsule containing thermonuclear fuel. The implosion is driven by irradiating the outside of the capsule by X-rays or by optical laser irradiation, where in each case the highest uniformity of irradiation is sought. In this paper we consider the theoretical problem of irradiation of a capsule by point sources of X-rays, and seek configurations which maximise uniformity. By studying the root-mean-square deviation in terms of different order harmonic modes, we rationalise the dependence of uniformity on distance </span><span><math><mi>d</mi></math></span> of the point sources from the centre of a capsule. After investigating simple configurations based on the Platonic solids, we use a global optimisation algorithm (basin-hopping) to seek better arrangements. The optimum configurations are found to depend strongly on <span><math><mi>d</mi></math></span>; at certain values which minimise nonuniformity, these involve grouping of sources on the vertices of octahedra or icosahedra, which we explain using a modal decomposition. The effect of uncertainties in both position and intensity is studied, and lastly we investigate the illumination of a capsule whose radius is changing with time.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"45 ","pages":"Article 101007"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimising point source irradiation of a capsule for maximum uniformity\",\"authors\":\"Oliver Breach , Peter Hatfield , Steven Rose\",\"doi\":\"10.1016/j.hedp.2022.101007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Inertial Confinement Fusion involves the implosion of a spherical capsule containing thermonuclear fuel. The implosion is driven by irradiating the outside of the capsule by X-rays or by optical laser irradiation, where in each case the highest uniformity of irradiation is sought. In this paper we consider the theoretical problem of irradiation of a capsule by point sources of X-rays, and seek configurations which maximise uniformity. By studying the root-mean-square deviation in terms of different order harmonic modes, we rationalise the dependence of uniformity on distance </span><span><math><mi>d</mi></math></span> of the point sources from the centre of a capsule. After investigating simple configurations based on the Platonic solids, we use a global optimisation algorithm (basin-hopping) to seek better arrangements. The optimum configurations are found to depend strongly on <span><math><mi>d</mi></math></span>; at certain values which minimise nonuniformity, these involve grouping of sources on the vertices of octahedra or icosahedra, which we explain using a modal decomposition. The effect of uncertainties in both position and intensity is studied, and lastly we investigate the illumination of a capsule whose radius is changing with time.</p></div>\",\"PeriodicalId\":49267,\"journal\":{\"name\":\"High Energy Density Physics\",\"volume\":\"45 \",\"pages\":\"Article 101007\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Density Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574181822000301\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181822000301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Optimising point source irradiation of a capsule for maximum uniformity
Inertial Confinement Fusion involves the implosion of a spherical capsule containing thermonuclear fuel. The implosion is driven by irradiating the outside of the capsule by X-rays or by optical laser irradiation, where in each case the highest uniformity of irradiation is sought. In this paper we consider the theoretical problem of irradiation of a capsule by point sources of X-rays, and seek configurations which maximise uniformity. By studying the root-mean-square deviation in terms of different order harmonic modes, we rationalise the dependence of uniformity on distance of the point sources from the centre of a capsule. After investigating simple configurations based on the Platonic solids, we use a global optimisation algorithm (basin-hopping) to seek better arrangements. The optimum configurations are found to depend strongly on ; at certain values which minimise nonuniformity, these involve grouping of sources on the vertices of octahedra or icosahedra, which we explain using a modal decomposition. The effect of uncertainties in both position and intensity is studied, and lastly we investigate the illumination of a capsule whose radius is changing with time.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.