基于模糊无监督聚类算法的陆地卫星遥感图像分类

Frank Y. Shih, Gwotsong P. Chen
{"title":"基于模糊无监督聚类算法的陆地卫星遥感图像分类","authors":"Frank Y. Shih,&nbsp;Gwotsong P. Chen","doi":"10.1016/1069-0115(94)90010-8","DOIUrl":null,"url":null,"abstract":"<div><p>The classification of each pixel in a Landsat image to one of the land cover types by conventional clustering techniques is highly inappropriate due to the low resolution of Landsat images and the multiplicity of terrain. The concept of fuzzy logic provides a flexible solution to this problem. This paper presents a new two-pass unsupervised clustering algorithm incorporated the fuzzy theory. In the first pass the mean vectors of different land cover types representing their geographic attributes are derived. In the second pass the membership grade of a pixel belonging to different land cover types is computed based on the distance between its gray-value vector and the mean vector of each type. Experimental results show that the developed fuzzy clustering algorithm produces more reasonable phenomenon interpretation than the traditional hard partition techniques.</p></div>","PeriodicalId":100668,"journal":{"name":"Information Sciences - Applications","volume":"1 2","pages":"Pages 97-116"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1069-0115(94)90010-8","citationCount":"0","resultStr":"{\"title\":\"Classification of landsat remote sensing images by a fuzzy unsupervised clustering algorithm\",\"authors\":\"Frank Y. Shih,&nbsp;Gwotsong P. Chen\",\"doi\":\"10.1016/1069-0115(94)90010-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classification of each pixel in a Landsat image to one of the land cover types by conventional clustering techniques is highly inappropriate due to the low resolution of Landsat images and the multiplicity of terrain. The concept of fuzzy logic provides a flexible solution to this problem. This paper presents a new two-pass unsupervised clustering algorithm incorporated the fuzzy theory. In the first pass the mean vectors of different land cover types representing their geographic attributes are derived. In the second pass the membership grade of a pixel belonging to different land cover types is computed based on the distance between its gray-value vector and the mean vector of each type. Experimental results show that the developed fuzzy clustering algorithm produces more reasonable phenomenon interpretation than the traditional hard partition techniques.</p></div>\",\"PeriodicalId\":100668,\"journal\":{\"name\":\"Information Sciences - Applications\",\"volume\":\"1 2\",\"pages\":\"Pages 97-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/1069-0115(94)90010-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/1069011594900108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences - Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/1069011594900108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于Landsat图像的低分辨率和地形的多样性,传统的聚类技术将Landsat图像中的每个像元分类为一种土地覆盖类型是非常不合适的。模糊逻辑的概念为这个问题提供了一个灵活的解决方案。本文提出了一种新的结合模糊理论的两步无监督聚类算法。第一步推导了不同土地覆盖类型代表其地理属性的平均向量。在第二步中,根据不同土地覆盖类型的灰度值向量与每种类型的平均向量之间的距离计算属于不同土地覆盖类型的像素的隶属度等级。实验结果表明,所提出的模糊聚类算法比传统的硬划分算法能更合理地解释现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of landsat remote sensing images by a fuzzy unsupervised clustering algorithm

The classification of each pixel in a Landsat image to one of the land cover types by conventional clustering techniques is highly inappropriate due to the low resolution of Landsat images and the multiplicity of terrain. The concept of fuzzy logic provides a flexible solution to this problem. This paper presents a new two-pass unsupervised clustering algorithm incorporated the fuzzy theory. In the first pass the mean vectors of different land cover types representing their geographic attributes are derived. In the second pass the membership grade of a pixel belonging to different land cover types is computed based on the distance between its gray-value vector and the mean vector of each type. Experimental results show that the developed fuzzy clustering algorithm produces more reasonable phenomenon interpretation than the traditional hard partition techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信