{"title":"椭圆体在不可压缩粘性流体中沉降的数值模拟","authors":"L.Héctor Juárez V.","doi":"10.1016/S1620-7742(01)01306-X","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we discuss the application of a methodology combining distributed Lagrange multiplier based fictitious domain techniques, finite element approximations and operator splitting, to the numerical simulation of the motion of an elliptic body falling in a Newtonian incompressible viscous fluid. The motion of the body is driven by the hydrodynamical forces and gravity. As qualitatively expected, the elliptic body rotates so that its broad side tends to be perpendicular to the flow direction.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 3","pages":"Pages 221-224"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01306-X","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of the sedimentation of an elliptic body in an incompressible viscous fluid\",\"authors\":\"L.Héctor Juárez V.\",\"doi\":\"10.1016/S1620-7742(01)01306-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note we discuss the application of a methodology combining distributed Lagrange multiplier based fictitious domain techniques, finite element approximations and operator splitting, to the numerical simulation of the motion of an elliptic body falling in a Newtonian incompressible viscous fluid. The motion of the body is driven by the hydrodynamical forces and gravity. As qualitatively expected, the elliptic body rotates so that its broad side tends to be perpendicular to the flow direction.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 3\",\"pages\":\"Pages 221-224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01306-X\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S162077420101306X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S162077420101306X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical simulation of the sedimentation of an elliptic body in an incompressible viscous fluid
In this note we discuss the application of a methodology combining distributed Lagrange multiplier based fictitious domain techniques, finite element approximations and operator splitting, to the numerical simulation of the motion of an elliptic body falling in a Newtonian incompressible viscous fluid. The motion of the body is driven by the hydrodynamical forces and gravity. As qualitatively expected, the elliptic body rotates so that its broad side tends to be perpendicular to the flow direction.