蒸汽灭菌器中化学指示剂反应的数值预测

Q3 Medicine
Paul Burian , Manuel Feurhuber , Marco Miranda , Marino Magno , Christoph Hochenauer
{"title":"蒸汽灭菌器中化学指示剂反应的数值预测","authors":"Paul Burian ,&nbsp;Manuel Feurhuber ,&nbsp;Marco Miranda ,&nbsp;Marino Magno ,&nbsp;Christoph Hochenauer","doi":"10.1016/j.phmed.2020.100034","DOIUrl":null,"url":null,"abstract":"<div><p>Steam sterilisation is a commonly used method in the sterilisation of surgical instruments. To ensure the sterility of the sterilised goods an evaluation of the sterilisation process is required. This might be achieved either through physical measurements or indicators. Optimal sterilisation results are achieved by removing the air from the sterilisation chamber. In this paper a new computational fluid dynamics (CFD) based approach is presented, which allows to calculate the steam distribution within a sterilisation chamber with focusing on hollow loads. Additional measurements were performed using a self-developed measurement chamber to validate the CFD model. A modified process challenge device (PCD) with different tube lengths in combination with a chemical indicator (CI) was tested, to identify the volumetric influence of the lumen on the resulting air-steam mixture therein. A numerically efficient model was developed to determine a steam volume fraction threshold leading to a response of the CI. This study aims to predict the volumetric amount of steam which is necessary in order to pass a PCD test fitted with a CI. Both the CFD model and the measurements showed that often an insufficient steam penetration is indicated by PCDs which can lead to an insufficient sterilisation of hollow loads.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"11 ","pages":"Article 100034"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phmed.2020.100034","citationCount":"5","resultStr":"{\"title\":\"Numerical prediction of the chemical indicator response used in steam sterilisers\",\"authors\":\"Paul Burian ,&nbsp;Manuel Feurhuber ,&nbsp;Marco Miranda ,&nbsp;Marino Magno ,&nbsp;Christoph Hochenauer\",\"doi\":\"10.1016/j.phmed.2020.100034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Steam sterilisation is a commonly used method in the sterilisation of surgical instruments. To ensure the sterility of the sterilised goods an evaluation of the sterilisation process is required. This might be achieved either through physical measurements or indicators. Optimal sterilisation results are achieved by removing the air from the sterilisation chamber. In this paper a new computational fluid dynamics (CFD) based approach is presented, which allows to calculate the steam distribution within a sterilisation chamber with focusing on hollow loads. Additional measurements were performed using a self-developed measurement chamber to validate the CFD model. A modified process challenge device (PCD) with different tube lengths in combination with a chemical indicator (CI) was tested, to identify the volumetric influence of the lumen on the resulting air-steam mixture therein. A numerically efficient model was developed to determine a steam volume fraction threshold leading to a response of the CI. This study aims to predict the volumetric amount of steam which is necessary in order to pass a PCD test fitted with a CI. Both the CFD model and the measurements showed that often an insufficient steam penetration is indicated by PCDs which can lead to an insufficient sterilisation of hollow loads.</p></div>\",\"PeriodicalId\":37787,\"journal\":{\"name\":\"Physics in Medicine\",\"volume\":\"11 \",\"pages\":\"Article 100034\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.phmed.2020.100034\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235245102030010X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235245102030010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 5

摘要

蒸汽灭菌是一种常用的手术器械灭菌方法。为确保灭菌产品的无菌性,需要对灭菌过程进行评估。这可以通过物理测量或指标来实现。最佳灭菌效果是通过从灭菌室中去除空气来实现的。本文提出了一种新的基于计算流体力学(CFD)的方法,该方法可以计算灭菌室内的蒸汽分布,并将重点放在中空载荷上。使用自行开发的测量室进行了额外的测量以验证CFD模型。试验了一种改进的工艺挑战装置(PCD),该装置具有不同的管长和化学指示剂(CI),以确定管腔对其中产生的空气-蒸汽混合物的体积影响。建立了一个有效的数值模型来确定导致CI响应的蒸汽体积分数阈值。本研究旨在预测蒸汽的体积量,这是通过PCD测试所必需的。CFD模型和测量结果都表明,PCDs通常表明蒸汽渗透不足,这可能导致空心载荷灭菌不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical prediction of the chemical indicator response used in steam sterilisers

Steam sterilisation is a commonly used method in the sterilisation of surgical instruments. To ensure the sterility of the sterilised goods an evaluation of the sterilisation process is required. This might be achieved either through physical measurements or indicators. Optimal sterilisation results are achieved by removing the air from the sterilisation chamber. In this paper a new computational fluid dynamics (CFD) based approach is presented, which allows to calculate the steam distribution within a sterilisation chamber with focusing on hollow loads. Additional measurements were performed using a self-developed measurement chamber to validate the CFD model. A modified process challenge device (PCD) with different tube lengths in combination with a chemical indicator (CI) was tested, to identify the volumetric influence of the lumen on the resulting air-steam mixture therein. A numerically efficient model was developed to determine a steam volume fraction threshold leading to a response of the CI. This study aims to predict the volumetric amount of steam which is necessary in order to pass a PCD test fitted with a CI. Both the CFD model and the measurements showed that often an insufficient steam penetration is indicated by PCDs which can lead to an insufficient sterilisation of hollow loads.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in Medicine
Physics in Medicine Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
0.00%
发文量
9
审稿时长
12 weeks
期刊介绍: The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信