{"title":"用广义加性模型对活动记录仪数据进行统计分析。","authors":"Edoardo Lisi, Juan J Abellan","doi":"10.1002/pst.2350","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing interest in the use of physical activity data in clinical studies, particularly in diseases that limit mobility in patients. High-frequency data collected with digital sensors are typically summarised into actigraphy features aggregated at epoch level (e.g., by minute). The statistical analysis of such volume of data is not straightforward. The general trend is to derive metrics, capturing specific aspects of physical activity, that condense (say) a week worth of data into a single numerical value. Here we propose to analyse the entire time-series data using Generalised Additive Models (GAMs). GAMs are semi-parametric models that allow inclusion of both parametric and non-parametric terms in the linear predictor. The latter are smooth terms (e.g., splines) and, in the context of actigraphy minute-by-minute data analysis, they can be used to assess daily patterns of physical activity. This in turn can be used to better understand changes over time in longitudinal studies as well as to compare treatment groups. We illustrate the application of GAMs in two clinical studies where actigraphy data was collected: a non-drug, single-arm study in patients with amyotrophic lateral sclerosis, and a physical-activity sub-study included in a phase 2b clinical trial in patients with chronic obstructive pulmonary disease.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"308-324"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical analysis of actigraphy data with generalised additive models.\",\"authors\":\"Edoardo Lisi, Juan J Abellan\",\"doi\":\"10.1002/pst.2350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a growing interest in the use of physical activity data in clinical studies, particularly in diseases that limit mobility in patients. High-frequency data collected with digital sensors are typically summarised into actigraphy features aggregated at epoch level (e.g., by minute). The statistical analysis of such volume of data is not straightforward. The general trend is to derive metrics, capturing specific aspects of physical activity, that condense (say) a week worth of data into a single numerical value. Here we propose to analyse the entire time-series data using Generalised Additive Models (GAMs). GAMs are semi-parametric models that allow inclusion of both parametric and non-parametric terms in the linear predictor. The latter are smooth terms (e.g., splines) and, in the context of actigraphy minute-by-minute data analysis, they can be used to assess daily patterns of physical activity. This in turn can be used to better understand changes over time in longitudinal studies as well as to compare treatment groups. We illustrate the application of GAMs in two clinical studies where actigraphy data was collected: a non-drug, single-arm study in patients with amyotrophic lateral sclerosis, and a physical-activity sub-study included in a phase 2b clinical trial in patients with chronic obstructive pulmonary disease.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"308-324\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2350\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2350","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Statistical analysis of actigraphy data with generalised additive models.
There is a growing interest in the use of physical activity data in clinical studies, particularly in diseases that limit mobility in patients. High-frequency data collected with digital sensors are typically summarised into actigraphy features aggregated at epoch level (e.g., by minute). The statistical analysis of such volume of data is not straightforward. The general trend is to derive metrics, capturing specific aspects of physical activity, that condense (say) a week worth of data into a single numerical value. Here we propose to analyse the entire time-series data using Generalised Additive Models (GAMs). GAMs are semi-parametric models that allow inclusion of both parametric and non-parametric terms in the linear predictor. The latter are smooth terms (e.g., splines) and, in the context of actigraphy minute-by-minute data analysis, they can be used to assess daily patterns of physical activity. This in turn can be used to better understand changes over time in longitudinal studies as well as to compare treatment groups. We illustrate the application of GAMs in two clinical studies where actigraphy data was collected: a non-drug, single-arm study in patients with amyotrophic lateral sclerosis, and a physical-activity sub-study included in a phase 2b clinical trial in patients with chronic obstructive pulmonary disease.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.