{"title":"无效工具变量的孟德尔随机化中的偏差和均方误差。","authors":"Lu Deng, Sheng Fu, Kai Yu","doi":"10.1002/gepi.22541","DOIUrl":null,"url":null,"abstract":"<p>Mendelian randomization (MR) is a statistical method that utilizes genetic variants as instrumental variables (IVs) to investigate causal relationships between risk factors and outcomes. Although MR has gained popularity in recent years due to its ability to analyze summary statistics from genome-wide association studies (GWAS), it requires a substantial number of single nucleotide polymorphisms (SNPs) as IVs to ensure sufficient power for detecting causal effects. Unfortunately, the complex genetic heritability of many traits can lead to the use of invalid IVs that affect both the risk factor and the outcome directly or through an unobserved confounder. This can result in biased and imprecise estimates, as reflected by a larger mean squared error (MSE). In this study, we focus on the widely used two-stage least squares (2SLS) method and derive formulas for its bias and MSE when estimating causal effects using invalid IVs. Using those formulas, we identify conditions under which the 2SLS estimate is unbiased and reveal how the independent or correlated pleiotropic effects influence the accuracy and precision of the 2SLS estimate. We validate these formulas through extensive simulation studies and demonstrate the application of those formulas in an MR study to evaluate the causal effect of the waist-to-hip ratio on various sleeping patterns. Our results can aid in designing future MR studies and serve as benchmarks for assessing more sophisticated MR methods.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 1","pages":"27-41"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias and mean squared error in Mendelian randomization with invalid instrumental variables\",\"authors\":\"Lu Deng, Sheng Fu, Kai Yu\",\"doi\":\"10.1002/gepi.22541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mendelian randomization (MR) is a statistical method that utilizes genetic variants as instrumental variables (IVs) to investigate causal relationships between risk factors and outcomes. Although MR has gained popularity in recent years due to its ability to analyze summary statistics from genome-wide association studies (GWAS), it requires a substantial number of single nucleotide polymorphisms (SNPs) as IVs to ensure sufficient power for detecting causal effects. Unfortunately, the complex genetic heritability of many traits can lead to the use of invalid IVs that affect both the risk factor and the outcome directly or through an unobserved confounder. This can result in biased and imprecise estimates, as reflected by a larger mean squared error (MSE). In this study, we focus on the widely used two-stage least squares (2SLS) method and derive formulas for its bias and MSE when estimating causal effects using invalid IVs. Using those formulas, we identify conditions under which the 2SLS estimate is unbiased and reveal how the independent or correlated pleiotropic effects influence the accuracy and precision of the 2SLS estimate. We validate these formulas through extensive simulation studies and demonstrate the application of those formulas in an MR study to evaluate the causal effect of the waist-to-hip ratio on various sleeping patterns. Our results can aid in designing future MR studies and serve as benchmarks for assessing more sophisticated MR methods.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"48 1\",\"pages\":\"27-41\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22541\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22541","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Bias and mean squared error in Mendelian randomization with invalid instrumental variables
Mendelian randomization (MR) is a statistical method that utilizes genetic variants as instrumental variables (IVs) to investigate causal relationships between risk factors and outcomes. Although MR has gained popularity in recent years due to its ability to analyze summary statistics from genome-wide association studies (GWAS), it requires a substantial number of single nucleotide polymorphisms (SNPs) as IVs to ensure sufficient power for detecting causal effects. Unfortunately, the complex genetic heritability of many traits can lead to the use of invalid IVs that affect both the risk factor and the outcome directly or through an unobserved confounder. This can result in biased and imprecise estimates, as reflected by a larger mean squared error (MSE). In this study, we focus on the widely used two-stage least squares (2SLS) method and derive formulas for its bias and MSE when estimating causal effects using invalid IVs. Using those formulas, we identify conditions under which the 2SLS estimate is unbiased and reveal how the independent or correlated pleiotropic effects influence the accuracy and precision of the 2SLS estimate. We validate these formulas through extensive simulation studies and demonstrate the application of those formulas in an MR study to evaluate the causal effect of the waist-to-hip ratio on various sleeping patterns. Our results can aid in designing future MR studies and serve as benchmarks for assessing more sophisticated MR methods.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.