Hecke范畴的局部微积分

Q4 Mathematics
Ben Elias, Geordie Williamson
{"title":"Hecke范畴的局部微积分","authors":"Ben Elias, Geordie Williamson","doi":"10.5802/ambp.415","DOIUrl":null,"url":null,"abstract":"We construct a functor from the Hecke category to a groupoid built from the underlying Coxeter group. This fixes a gap in an earlier work of the authors. This functor provides an abstract realization of the localization of the Hecke category at the field of fractions. Knowing explicit formulas for the localization is a key technical tool in software for computations with Soergel bimodules.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":"61 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Localized calculus for the Hecke category\",\"authors\":\"Ben Elias, Geordie Williamson\",\"doi\":\"10.5802/ambp.415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a functor from the Hecke category to a groupoid built from the underlying Coxeter group. This fixes a gap in an earlier work of the authors. This functor provides an abstract realization of the localization of the Hecke category at the field of fractions. Knowing explicit formulas for the localization is a key technical tool in software for computations with Soergel bimodules.\",\"PeriodicalId\":52347,\"journal\":{\"name\":\"Annales Mathematiques Blaise Pascal\",\"volume\":\"61 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques Blaise Pascal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ambp.415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10

摘要

我们构造一个从Hecke范畴到从底层Coxeter群构造的群形的函子。这弥补了作者早期工作中的一个空白。这个函子提供了Hecke范畴在分数域的局部化的一个抽象实现。了解定位的显式公式是Soergel双模计算软件的关键技术工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localized calculus for the Hecke category
We construct a functor from the Hecke category to a groupoid built from the underlying Coxeter group. This fixes a gap in an earlier work of the authors. This functor provides an abstract realization of the localization of the Hecke category at the field of fractions. Knowing explicit formulas for the localization is a key technical tool in software for computations with Soergel bimodules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematiques Blaise Pascal
Annales Mathematiques Blaise Pascal Mathematics-Algebra and Number Theory
CiteScore
0.50
自引率
0.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信