数域上素数的分裂简论

{"title":"数域上素数的分裂简论","authors":"","doi":"10.33140/jmtcm.02.09.02","DOIUrl":null,"url":null,"abstract":"The study of Dedekind Zeta Functions over a number field extension uses different aspects of both Algebraic and Analytic Number Theory. In this paper, we shall learn about the structure and different analytic aspects of such functions, namely the domain of its convregence and analyticity at different points of ℂ when the function is defined over any finite field extension K over ℚ . Moreover, given any two Number Fields L and K over ℚ with L being Normal over K, our intention is to classify and study the primes in K which split completely in L. Also, we shall explore some special cases related to this result","PeriodicalId":437292,"journal":{"name":"Journal of Mathematical Techniques and Computational Mathematics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Brief Introduction to Splitting Of Primes over Number Fields\",\"authors\":\"\",\"doi\":\"10.33140/jmtcm.02.09.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of Dedekind Zeta Functions over a number field extension uses different aspects of both Algebraic and Analytic Number Theory. In this paper, we shall learn about the structure and different analytic aspects of such functions, namely the domain of its convregence and analyticity at different points of ℂ when the function is defined over any finite field extension K over ℚ . Moreover, given any two Number Fields L and K over ℚ with L being Normal over K, our intention is to classify and study the primes in K which split completely in L. Also, we shall explore some special cases related to this result\",\"PeriodicalId\":437292,\"journal\":{\"name\":\"Journal of Mathematical Techniques and Computational Mathematics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Techniques and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/jmtcm.02.09.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Techniques and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/jmtcm.02.09.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数域扩展上的Dedekind Zeta函数的研究使用了代数数论和解析数论的不同方面。在本文中,我们将学习这类函数的结构和不同的解析方面,即当函数在任意有限域扩展K / π上定义时,它在不同的点上的收敛性和解析性的域。此外,给定任意两个数域L和K / π,且L为正态/ K,我们的目的是对K中在L中完全分裂的素数进行分类和研究,并探讨与此结果相关的一些特殊情况
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Brief Introduction to Splitting Of Primes over Number Fields
The study of Dedekind Zeta Functions over a number field extension uses different aspects of both Algebraic and Analytic Number Theory. In this paper, we shall learn about the structure and different analytic aspects of such functions, namely the domain of its convregence and analyticity at different points of ℂ when the function is defined over any finite field extension K over ℚ . Moreover, given any two Number Fields L and K over ℚ with L being Normal over K, our intention is to classify and study the primes in K which split completely in L. Also, we shall explore some special cases related to this result
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信