{"title":"用于治疗痴呆和衰老的靶向药物递送的生物基纳米乳液","authors":"Joseph S. D'Arrigo","doi":"10.31491/apt.2023.09.121","DOIUrl":null,"url":null,"abstract":"Early changes in cerebrovascular hemodynamics and endothelial function can contribute to altered cognitive function and systemic vascular stiffness later in life. Accordingly, vascular pathology accompanies the mechanisms underlying aging. The development of chronic cerebral hypoperfusion, which leads to a lack of blood flow to the brain, is a common trait despite the various and complex pathogenic mechanisms causing these vascular alterations. Drugs or other bioactive compounds can be incorporated into a \"high density lipoprotein-like\" (\"HDL-like\") lipid nanocarrier to create a multifunctional \"combination therapeutic\" that can target cell-surface scavenger receptors, primarily class B type I (i.e., SR-BI). The enhanced endocytosis of the nanocarrier's drug contents into various target cells, made possible by this proposed (biomimetic-nanocarrier) therapeutic vehicle, increases the likelihood that this multitasking \"combination therapeutic\" will be more effective at various stages of dementia.","PeriodicalId":7500,"journal":{"name":"Aging pathobiology and therapeutics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biobased nanoemulsions for targeted drug delivery to treat dementia and aging\",\"authors\":\"Joseph S. D'Arrigo\",\"doi\":\"10.31491/apt.2023.09.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early changes in cerebrovascular hemodynamics and endothelial function can contribute to altered cognitive function and systemic vascular stiffness later in life. Accordingly, vascular pathology accompanies the mechanisms underlying aging. The development of chronic cerebral hypoperfusion, which leads to a lack of blood flow to the brain, is a common trait despite the various and complex pathogenic mechanisms causing these vascular alterations. Drugs or other bioactive compounds can be incorporated into a \\\"high density lipoprotein-like\\\" (\\\"HDL-like\\\") lipid nanocarrier to create a multifunctional \\\"combination therapeutic\\\" that can target cell-surface scavenger receptors, primarily class B type I (i.e., SR-BI). The enhanced endocytosis of the nanocarrier's drug contents into various target cells, made possible by this proposed (biomimetic-nanocarrier) therapeutic vehicle, increases the likelihood that this multitasking \\\"combination therapeutic\\\" will be more effective at various stages of dementia.\",\"PeriodicalId\":7500,\"journal\":{\"name\":\"Aging pathobiology and therapeutics\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging pathobiology and therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31491/apt.2023.09.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging pathobiology and therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31491/apt.2023.09.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biobased nanoemulsions for targeted drug delivery to treat dementia and aging
Early changes in cerebrovascular hemodynamics and endothelial function can contribute to altered cognitive function and systemic vascular stiffness later in life. Accordingly, vascular pathology accompanies the mechanisms underlying aging. The development of chronic cerebral hypoperfusion, which leads to a lack of blood flow to the brain, is a common trait despite the various and complex pathogenic mechanisms causing these vascular alterations. Drugs or other bioactive compounds can be incorporated into a "high density lipoprotein-like" ("HDL-like") lipid nanocarrier to create a multifunctional "combination therapeutic" that can target cell-surface scavenger receptors, primarily class B type I (i.e., SR-BI). The enhanced endocytosis of the nanocarrier's drug contents into various target cells, made possible by this proposed (biomimetic-nanocarrier) therapeutic vehicle, increases the likelihood that this multitasking "combination therapeutic" will be more effective at various stages of dementia.