{"title":"具有指数剪切流和滞止点的流上的孤波","authors":"Marcelo V Flamarion, Roberto-J R Ribeiro","doi":"10.1093/qjmam/hbac021","DOIUrl":null,"url":null,"abstract":"Summary While several articles have been written on water waves on flows with constant vorticity, little is known about the extent to which a non-constant vorticity affects the flow structure, such as the appearance of stagnation points. In order to shed light on this topic, we investigate in detail the flow beneath solitary waves propagating on an exponentially decaying sheared current. Our focus is to analyse numerically the emergence of stagnation points. For this purpose, we approximate the velocity field within the fluid bulk through the classical Korteweg-de Vries asymptotic expansion and use the Matlab language to evaluate the resulting stream function. Our findings suggest that the flow beneath the waves can have 0, 1 or 2 stagnation points in the fluid body. We also study the bifurcation between these flows. Our simulations indicate that the stagnation points emerge from a streamline with a sharp corner.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"24 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solitary waves on flows with an exponentially sheared current and stagnation points\",\"authors\":\"Marcelo V Flamarion, Roberto-J R Ribeiro\",\"doi\":\"10.1093/qjmam/hbac021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary While several articles have been written on water waves on flows with constant vorticity, little is known about the extent to which a non-constant vorticity affects the flow structure, such as the appearance of stagnation points. In order to shed light on this topic, we investigate in detail the flow beneath solitary waves propagating on an exponentially decaying sheared current. Our focus is to analyse numerically the emergence of stagnation points. For this purpose, we approximate the velocity field within the fluid bulk through the classical Korteweg-de Vries asymptotic expansion and use the Matlab language to evaluate the resulting stream function. Our findings suggest that the flow beneath the waves can have 0, 1 or 2 stagnation points in the fluid body. We also study the bifurcation between these flows. Our simulations indicate that the stagnation points emerge from a streamline with a sharp corner.\",\"PeriodicalId\":56087,\"journal\":{\"name\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/qjmam/hbac021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/qjmam/hbac021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Solitary waves on flows with an exponentially sheared current and stagnation points
Summary While several articles have been written on water waves on flows with constant vorticity, little is known about the extent to which a non-constant vorticity affects the flow structure, such as the appearance of stagnation points. In order to shed light on this topic, we investigate in detail the flow beneath solitary waves propagating on an exponentially decaying sheared current. Our focus is to analyse numerically the emergence of stagnation points. For this purpose, we approximate the velocity field within the fluid bulk through the classical Korteweg-de Vries asymptotic expansion and use the Matlab language to evaluate the resulting stream function. Our findings suggest that the flow beneath the waves can have 0, 1 or 2 stagnation points in the fluid body. We also study the bifurcation between these flows. Our simulations indicate that the stagnation points emerge from a streamline with a sharp corner.
期刊介绍:
The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.