使用机器学习预测稳定性和增长协议遵从性

Kea Baret, Amélie Barbier-Gauchard, Theophilos Papadimitriou
{"title":"使用机器学习预测稳定性和增长协议遵从性","authors":"Kea Baret, Amélie Barbier-Gauchard, Theophilos Papadimitriou","doi":"10.1111/twec.13518","DOIUrl":null,"url":null,"abstract":"Abstract The 2011 reform of the Stability and Growth Pact (1996) strengthened the European Commission's monitoring of EU member states' public finance. Failure to comply with the 3% limit on public deficit triggers an audit. In this paper, we present a machine learning based forecasting model for compliance with the 3% limit. We use data from 2006 to 2018 (a turbulent period including the Global Financial Crisis and the Sovereign Debt Crisis) for the 28 EU member states. After identifying 8 features as predictors among 138 variables, forecasting is performed using a support vector machine (SVM) algorithm. The proposed model achieved a forecasting accuracy of nearly 92% and outperformed the logit model used as a benchmark.","PeriodicalId":75211,"journal":{"name":"The World economy","volume":"8 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forecasting stability and growth pact compliance using machine learning\",\"authors\":\"Kea Baret, Amélie Barbier-Gauchard, Theophilos Papadimitriou\",\"doi\":\"10.1111/twec.13518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The 2011 reform of the Stability and Growth Pact (1996) strengthened the European Commission's monitoring of EU member states' public finance. Failure to comply with the 3% limit on public deficit triggers an audit. In this paper, we present a machine learning based forecasting model for compliance with the 3% limit. We use data from 2006 to 2018 (a turbulent period including the Global Financial Crisis and the Sovereign Debt Crisis) for the 28 EU member states. After identifying 8 features as predictors among 138 variables, forecasting is performed using a support vector machine (SVM) algorithm. The proposed model achieved a forecasting accuracy of nearly 92% and outperformed the logit model used as a benchmark.\",\"PeriodicalId\":75211,\"journal\":{\"name\":\"The World economy\",\"volume\":\"8 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World economy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/twec.13518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/twec.13518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

2011年《稳定与增长公约》(1996)的改革加强了欧盟委员会对欧盟成员国公共财政的监督。未能遵守3%的公共赤字限制将触发审计。在本文中,我们提出了一个基于机器学习的预测模型,以满足3%的限制。我们使用了2006年至2018年(包括全球金融危机和主权债务危机在内的动荡时期)28个欧盟成员国的数据。在138个变量中识别出8个特征作为预测因子后,使用支持向量机(SVM)算法进行预测。该模型的预测准确率接近92%,优于作为基准的logit模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting stability and growth pact compliance using machine learning
Abstract The 2011 reform of the Stability and Growth Pact (1996) strengthened the European Commission's monitoring of EU member states' public finance. Failure to comply with the 3% limit on public deficit triggers an audit. In this paper, we present a machine learning based forecasting model for compliance with the 3% limit. We use data from 2006 to 2018 (a turbulent period including the Global Financial Crisis and the Sovereign Debt Crisis) for the 28 EU member states. After identifying 8 features as predictors among 138 variables, forecasting is performed using a support vector machine (SVM) algorithm. The proposed model achieved a forecasting accuracy of nearly 92% and outperformed the logit model used as a benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信