循环轨道的算子代数

Benoit Estienne, Yacine Ikhlef, Andrei Rotaru
{"title":"循环轨道的算子代数","authors":"Benoit Estienne, Yacine Ikhlef, Andrei Rotaru","doi":"10.1088/1751-8121/acfcf6","DOIUrl":null,"url":null,"abstract":"Abstract We identify the maximal chiral algebra of conformal cyclic orbifolds. In terms of this extended algebra, the orbifold is a rational and diagonal conformal field theory, provided the mother theory itself is also rational and diagonal. The operator content and operator product expansion of the cyclic orbifolds are revisited in terms of this algebra. The fusion rules and fusion numbers are computed via the Verlinde formula. This allows one to predict which conformal blocks appear in a given four-point function of twisted or untwisted operators, which is relevant for the computation of various entanglement measures in one-dimensional critical systems.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The operator algebra of cyclic orbifolds\",\"authors\":\"Benoit Estienne, Yacine Ikhlef, Andrei Rotaru\",\"doi\":\"10.1088/1751-8121/acfcf6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We identify the maximal chiral algebra of conformal cyclic orbifolds. In terms of this extended algebra, the orbifold is a rational and diagonal conformal field theory, provided the mother theory itself is also rational and diagonal. The operator content and operator product expansion of the cyclic orbifolds are revisited in terms of this algebra. The fusion rules and fusion numbers are computed via the Verlinde formula. This allows one to predict which conformal blocks appear in a given four-point function of twisted or untwisted operators, which is relevant for the computation of various entanglement measures in one-dimensional critical systems.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfcf6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfcf6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了共形环轨道的极大手性代数。在这个扩展代数中,如果母理论本身也是有理对角的,那么轨道是一个有理对角的共形场论。用这个代数重新讨论了循环轨道的算子内容和算子积展开式。通过Verlinde公式计算融合规则和融合数。这允许人们预测在给定的扭曲或非扭曲算子的四点函数中出现哪些共形块,这与一维临界系统中各种纠缠度量的计算有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The operator algebra of cyclic orbifolds
Abstract We identify the maximal chiral algebra of conformal cyclic orbifolds. In terms of this extended algebra, the orbifold is a rational and diagonal conformal field theory, provided the mother theory itself is also rational and diagonal. The operator content and operator product expansion of the cyclic orbifolds are revisited in terms of this algebra. The fusion rules and fusion numbers are computed via the Verlinde formula. This allows one to predict which conformal blocks appear in a given four-point function of twisted or untwisted operators, which is relevant for the computation of various entanglement measures in one-dimensional critical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信