{"title":"带非横向不可压缩漂移的Dirichlet问题的主特征值移至无穷","authors":"Brice Franke, Damak Mondher, Nassim Athmouni, Nejib Yaakoubi","doi":"10.7146/math.scand.a-139656","DOIUrl":null,"url":null,"abstract":"We prove that it is always possible to add some divergence free drift vector field to some two dimensional spherical Dirichlet problem, such that the resulting principal eigenvalue lies above a prescribed bound. By construction those drift vector fields vanish on the boundary and their flow lines individually stay away from the boundary. The capacity of those drift vector fields to accelerate diffusivity originates from high frequency oscillation of the associated flow lines. The lower bounds for the spectrum are obtained through isoperimetric inequalities for flow invariant functions.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":"91 3-4","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On shifting the principal eigenvalue of Dirichlet problem to infinity with non-transversal incompressible drift\",\"authors\":\"Brice Franke, Damak Mondher, Nassim Athmouni, Nejib Yaakoubi\",\"doi\":\"10.7146/math.scand.a-139656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that it is always possible to add some divergence free drift vector field to some two dimensional spherical Dirichlet problem, such that the resulting principal eigenvalue lies above a prescribed bound. By construction those drift vector fields vanish on the boundary and their flow lines individually stay away from the boundary. The capacity of those drift vector fields to accelerate diffusivity originates from high frequency oscillation of the associated flow lines. The lower bounds for the spectrum are obtained through isoperimetric inequalities for flow invariant functions.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\"91 3-4\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-139656\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/math.scand.a-139656","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On shifting the principal eigenvalue of Dirichlet problem to infinity with non-transversal incompressible drift
We prove that it is always possible to add some divergence free drift vector field to some two dimensional spherical Dirichlet problem, such that the resulting principal eigenvalue lies above a prescribed bound. By construction those drift vector fields vanish on the boundary and their flow lines individually stay away from the boundary. The capacity of those drift vector fields to accelerate diffusivity originates from high frequency oscillation of the associated flow lines. The lower bounds for the spectrum are obtained through isoperimetric inequalities for flow invariant functions.
期刊介绍:
Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length.
Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months.
All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.