{"title":"带非横向不可压缩漂移的Dirichlet问题的主特征值移至无穷","authors":"Brice Franke, Damak Mondher, Nassim Athmouni, Nejib Yaakoubi","doi":"10.7146/math.scand.a-139656","DOIUrl":null,"url":null,"abstract":"We prove that it is always possible to add some divergence free drift vector field to some two dimensional spherical Dirichlet problem, such that the resulting principal eigenvalue lies above a prescribed bound. By construction those drift vector fields vanish on the boundary and their flow lines individually stay away from the boundary. The capacity of those drift vector fields to accelerate diffusivity originates from high frequency oscillation of the associated flow lines. The lower bounds for the spectrum are obtained through isoperimetric inequalities for flow invariant functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On shifting the principal eigenvalue of Dirichlet problem to infinity with non-transversal incompressible drift\",\"authors\":\"Brice Franke, Damak Mondher, Nassim Athmouni, Nejib Yaakoubi\",\"doi\":\"10.7146/math.scand.a-139656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that it is always possible to add some divergence free drift vector field to some two dimensional spherical Dirichlet problem, such that the resulting principal eigenvalue lies above a prescribed bound. By construction those drift vector fields vanish on the boundary and their flow lines individually stay away from the boundary. The capacity of those drift vector fields to accelerate diffusivity originates from high frequency oscillation of the associated flow lines. The lower bounds for the spectrum are obtained through isoperimetric inequalities for flow invariant functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-139656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/math.scand.a-139656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On shifting the principal eigenvalue of Dirichlet problem to infinity with non-transversal incompressible drift
We prove that it is always possible to add some divergence free drift vector field to some two dimensional spherical Dirichlet problem, such that the resulting principal eigenvalue lies above a prescribed bound. By construction those drift vector fields vanish on the boundary and their flow lines individually stay away from the boundary. The capacity of those drift vector fields to accelerate diffusivity originates from high frequency oscillation of the associated flow lines. The lower bounds for the spectrum are obtained through isoperimetric inequalities for flow invariant functions.