二阶广义多项式的一个可选方程

IF 0.4 Q4 MATHEMATICS
Zoltán Boros, Rayene Menzer
{"title":"二阶广义多项式的一个可选方程","authors":"Zoltán Boros, Rayene Menzer","doi":"10.2478/amsil-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we consider a generalized polynomial f : ℝ → ℝ of degree two that satisfies the additional equation f ( x ) f ( y ) = 0 for the pairs ( x, y ) ∈ D , where D ⊆ ℝ 2 is given by some algebraic condition. In the particular cases when there exists a positive rational m fulfilling <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mi>D</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>ℝ</m:mi> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>|</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>-</m:mo> <m:mi>m</m:mi> <m:msup> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> D = \\left\\{ {\\left( {x,y} \\right) \\in \\mathbb{R}{^2}|{x^2} - m{y^2} = 1} \\right\\}, we prove that f ( x ) = 0 for all x ∈ ℝ.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"56 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Alternative Equation for Generalized Polynomials of Degree Two\",\"authors\":\"Zoltán Boros, Rayene Menzer\",\"doi\":\"10.2478/amsil-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we consider a generalized polynomial f : ℝ → ℝ of degree two that satisfies the additional equation f ( x ) f ( y ) = 0 for the pairs ( x, y ) ∈ D , where D ⊆ ℝ 2 is given by some algebraic condition. In the particular cases when there exists a positive rational m fulfilling <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mrow> <m:mi>D</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>ℝ</m:mi> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>|</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>-</m:mo> <m:mi>m</m:mi> <m:msup> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> D = \\\\left\\\\{ {\\\\left( {x,y} \\\\right) \\\\in \\\\mathbb{R}{^2}|{x^2} - m{y^2} = 1} \\\\right\\\\}, we prove that f ( x ) = 0 for all x ∈ ℝ.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑对(x, y)∈D满足附加方程f (x) f (y) = 0的二阶广义多项式f: v→v,其中D∈D由某些代数条件给定。在特殊情况下,当存在一个正有理m满足D = {(x,y)∈x²| x 2 - m y 2 = 1}, D = \left\{{\左\ ({x,y} \右)\ \mathbb{R}{^2}|{x^2} - m{y^2} = 1} \right\}时,证明了f (x)对所有x∈x = 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Alternative Equation for Generalized Polynomials of Degree Two
Abstract In this paper we consider a generalized polynomial f : ℝ → ℝ of degree two that satisfies the additional equation f ( x ) f ( y ) = 0 for the pairs ( x, y ) ∈ D , where D ⊆ ℝ 2 is given by some algebraic condition. In the particular cases when there exists a positive rational m fulfilling D = { ( x , y ) 2 | x 2 - m y 2 = 1 } , D = \left\{ {\left( {x,y} \right) \in \mathbb{R}{^2}|{x^2} - m{y^2} = 1} \right\}, we prove that f ( x ) = 0 for all x ∈ ℝ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信