交换代数中的σ-单原函数

Q3 Mathematics
Vitalii Shpakivskyi
{"title":"交换代数中的σ-单原函数","authors":"Vitalii Shpakivskyi","doi":"10.15673/tmgc.v16i1.2421","DOIUrl":null,"url":null,"abstract":"In finite-dimensional commutative associative algebra, the concept of σ-monogenic function is introduced. Necessary and sufficient conditions for σ-monogeneity have been established. In some low-dimensional algebras, with a special choice of σ, the representation of σ-monogenic functions is obtained using holomorphic functions of a complex variable. We proposed the application of σ-monogenic functions with values in two-dimensional biharmonic algebra to representation of solutions of two-dimensional biharmonic equation.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"σ-monogenic functions in commutative algebras\",\"authors\":\"Vitalii Shpakivskyi\",\"doi\":\"10.15673/tmgc.v16i1.2421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In finite-dimensional commutative associative algebra, the concept of σ-monogenic function is introduced. Necessary and sufficient conditions for σ-monogeneity have been established. In some low-dimensional algebras, with a special choice of σ, the representation of σ-monogenic functions is obtained using holomorphic functions of a complex variable. We proposed the application of σ-monogenic functions with values in two-dimensional biharmonic algebra to representation of solutions of two-dimensional biharmonic equation.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v16i1.2421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v16i1.2421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在有限维交换关联代数中,引入了σ-单基因函数的概念。建立了σ-单性的充分必要条件。在一些低维代数中,在σ的特殊选择下,用复变量的全纯函数得到了σ-单基因函数的表示。提出了二维双调和代数中有值的σ-单基因函数在二维双调和方程解表示中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
σ-monogenic functions in commutative algebras
In finite-dimensional commutative associative algebra, the concept of σ-monogenic function is introduced. Necessary and sufficient conditions for σ-monogeneity have been established. In some low-dimensional algebras, with a special choice of σ, the representation of σ-monogenic functions is obtained using holomorphic functions of a complex variable. We proposed the application of σ-monogenic functions with values in two-dimensional biharmonic algebra to representation of solutions of two-dimensional biharmonic equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信