偶特征有限域上的四类二元置换多项式

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Changhui CHEN, Haibin KAN, Jie PENG, Li WANG
{"title":"偶特征有限域上的四类二元置换多项式","authors":"Changhui CHEN, Haibin KAN, Jie PENG, Li WANG","doi":"10.1587/transfun.2023eal2084","DOIUrl":null,"url":null,"abstract":"Permutation polynomials have important applications in cryptography, coding theory and combinatorial designs. In this letter, we construct four classes of permutation polynomials over 𝔽2n × 𝔽2n , where 𝔽2n is the finite field with 2n elements.","PeriodicalId":55003,"journal":{"name":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","volume":"25 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four classes of bivariate permutation polynomials over finite fields of even characteristic\",\"authors\":\"Changhui CHEN, Haibin KAN, Jie PENG, Li WANG\",\"doi\":\"10.1587/transfun.2023eal2084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permutation polynomials have important applications in cryptography, coding theory and combinatorial designs. In this letter, we construct four classes of permutation polynomials over 𝔽2n × 𝔽2n , where 𝔽2n is the finite field with 2n elements.\",\"PeriodicalId\":55003,\"journal\":{\"name\":\"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transfun.2023eal2084\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2023eal2084","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

排列多项式在密码学、编码理论和组合设计中有着重要的应用。在这封信中,我们在𝔽2n ×𝔽2n上构造了四类置换多项式,其中𝔽2n是2n个元素的有限域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four classes of bivariate permutation polynomials over finite fields of even characteristic
Permutation polynomials have important applications in cryptography, coding theory and combinatorial designs. In this letter, we construct four classes of permutation polynomials over 𝔽2n × 𝔽2n , where 𝔽2n is the finite field with 2n elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
137
审稿时长
3.9 months
期刊介绍: Includes reports on research, developments, and examinations performed by the Society''s members for the specific fields shown in the category list such as detailed below, the contents of which may advance the development of science and industry: (1) Reports on new theories, experiments with new contents, or extensions of and supplements to conventional theories and experiments. (2) Reports on development of measurement technology and various applied technologies. (3) Reports on the planning, design, manufacture, testing, or operation of facilities, machinery, parts, materials, etc. (4) Presentation of new methods, suggestion of new angles, ideas, systematization, software, or any new facts regarding the above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信