Malin Bomberg, Hanna Miettinen, Réka Hajdu-Rahkama, Aino-Maija Lakaniemi, Wojciech Anacki, Kajetan Witecki, Jaakko A. Puhakka, Théodore Ineich, Wickus Slabbert, Päivi Kinnunen
{"title":"间接原位生物浸出是一种获取深埋金属储量的新兴工具,但这一过程能否得到控制?- 1公里深度的铜浸出个案研究","authors":"Malin Bomberg, Hanna Miettinen, Réka Hajdu-Rahkama, Aino-Maija Lakaniemi, Wojciech Anacki, Kajetan Witecki, Jaakko A. Puhakka, Théodore Ineich, Wickus Slabbert, Päivi Kinnunen","doi":"10.1016/j.eti.2023.103375","DOIUrl":null,"url":null,"abstract":"Copper is a strategic raw material widely needed for electrification. One possibility to diversify the supply to answer the market demand is to produce copper with in situ technology. In this study, feasibility of in situ bioleaching of copper was tested in a deep subsurface deposit. During in situ bioleaching of copper, copper is leached using a biologically produced ferric iron solution, which is recycled back to the in situ reactor after valuable metals are recovered, after which the solution is re-oxidized by iron-oxidizing microorganisms (IOB). A rock reactor was constructed in the Rudna Mine at ca 1 km depth and the microbiology and hydrogeochemistry of the water circulated through the reactor after blasting for fracturing the rock was monitored over time. The test site was rich in carbonates requiring large quantities of acid to remove the buffering capacity. The bacterial, archaeal and fungal communities in the rock reactor were monitored and characterized by quantitative polymerase chain reaction (qPCR) and amplicon sequencing, and acidophilic, iron oxidizing activity of the microbial communities during operation and pre- and post-operation phases was tested by cultivation. No acidophilic iron oxidizers were detected in the water samples during construction of the pilot reactor. Acidic leaching solution originating from the underground ferric iron generating bioreactor (FIGB) contained acidophilic IOB, which were also viable after the leach liquor was returned from the rock reactor. In the post-operation phase, when the rock reactor was neutralized with CaCO3/Ca(HCO3)2 solution, to inhibit the acidophilic IOB, iron oxidizing microorganisms were still present in the effluent solution one week after termination of the leaching and start of neutralization. Therefore, the post-operation phase needs further attention to completely stop the activity of added microorganisms. Copper was abundantly leached during the acid wash and leaching phases, proving the concept of deep in situ bioleaching.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":"39 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indirect in situ Bioleaching is an Emerging Tool for Accessing Deeply Buried Metal Reserves, But Can the Process be Managed? – A Case Study of Copper Leaching at 1km Depth\",\"authors\":\"Malin Bomberg, Hanna Miettinen, Réka Hajdu-Rahkama, Aino-Maija Lakaniemi, Wojciech Anacki, Kajetan Witecki, Jaakko A. Puhakka, Théodore Ineich, Wickus Slabbert, Päivi Kinnunen\",\"doi\":\"10.1016/j.eti.2023.103375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper is a strategic raw material widely needed for electrification. One possibility to diversify the supply to answer the market demand is to produce copper with in situ technology. In this study, feasibility of in situ bioleaching of copper was tested in a deep subsurface deposit. During in situ bioleaching of copper, copper is leached using a biologically produced ferric iron solution, which is recycled back to the in situ reactor after valuable metals are recovered, after which the solution is re-oxidized by iron-oxidizing microorganisms (IOB). A rock reactor was constructed in the Rudna Mine at ca 1 km depth and the microbiology and hydrogeochemistry of the water circulated through the reactor after blasting for fracturing the rock was monitored over time. The test site was rich in carbonates requiring large quantities of acid to remove the buffering capacity. The bacterial, archaeal and fungal communities in the rock reactor were monitored and characterized by quantitative polymerase chain reaction (qPCR) and amplicon sequencing, and acidophilic, iron oxidizing activity of the microbial communities during operation and pre- and post-operation phases was tested by cultivation. No acidophilic iron oxidizers were detected in the water samples during construction of the pilot reactor. Acidic leaching solution originating from the underground ferric iron generating bioreactor (FIGB) contained acidophilic IOB, which were also viable after the leach liquor was returned from the rock reactor. In the post-operation phase, when the rock reactor was neutralized with CaCO3/Ca(HCO3)2 solution, to inhibit the acidophilic IOB, iron oxidizing microorganisms were still present in the effluent solution one week after termination of the leaching and start of neutralization. Therefore, the post-operation phase needs further attention to completely stop the activity of added microorganisms. Copper was abundantly leached during the acid wash and leaching phases, proving the concept of deep in situ bioleaching.\",\"PeriodicalId\":11899,\"journal\":{\"name\":\"Environmental Technology and Innovation\",\"volume\":\"39 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.eti.2023.103375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.eti.2023.103375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Indirect in situ Bioleaching is an Emerging Tool for Accessing Deeply Buried Metal Reserves, But Can the Process be Managed? – A Case Study of Copper Leaching at 1km Depth
Copper is a strategic raw material widely needed for electrification. One possibility to diversify the supply to answer the market demand is to produce copper with in situ technology. In this study, feasibility of in situ bioleaching of copper was tested in a deep subsurface deposit. During in situ bioleaching of copper, copper is leached using a biologically produced ferric iron solution, which is recycled back to the in situ reactor after valuable metals are recovered, after which the solution is re-oxidized by iron-oxidizing microorganisms (IOB). A rock reactor was constructed in the Rudna Mine at ca 1 km depth and the microbiology and hydrogeochemistry of the water circulated through the reactor after blasting for fracturing the rock was monitored over time. The test site was rich in carbonates requiring large quantities of acid to remove the buffering capacity. The bacterial, archaeal and fungal communities in the rock reactor were monitored and characterized by quantitative polymerase chain reaction (qPCR) and amplicon sequencing, and acidophilic, iron oxidizing activity of the microbial communities during operation and pre- and post-operation phases was tested by cultivation. No acidophilic iron oxidizers were detected in the water samples during construction of the pilot reactor. Acidic leaching solution originating from the underground ferric iron generating bioreactor (FIGB) contained acidophilic IOB, which were also viable after the leach liquor was returned from the rock reactor. In the post-operation phase, when the rock reactor was neutralized with CaCO3/Ca(HCO3)2 solution, to inhibit the acidophilic IOB, iron oxidizing microorganisms were still present in the effluent solution one week after termination of the leaching and start of neutralization. Therefore, the post-operation phase needs further attention to completely stop the activity of added microorganisms. Copper was abundantly leached during the acid wash and leaching phases, proving the concept of deep in situ bioleaching.