Ermin Rachmawati, Mohammad S. Rohman, Nashi Widodo, Mifetika Lukitasari, Dwi A. Nugroho, Feri E. Hermanto, Mukhamad N. Kholis
{"title":"利用代谢物谱、基因表达和计算机方法分析咖啡-绿茶-姜黄组合对心脏代谢综合征的作用","authors":"Ermin Rachmawati, Mohammad S. Rohman, Nashi Widodo, Mifetika Lukitasari, Dwi A. Nugroho, Feri E. Hermanto, Mukhamad N. Kholis","doi":"10.56499/jppres23.1702_11.6.961","DOIUrl":null,"url":null,"abstract":"Context: The development of functional drinks to inhibit oxidative stress and inflammation as a critical process in inducing heart damage in metabolic syndrome is required. Coffee, tea, and turmeric have all been shown to offer health advantages. Aims: To investigate the effect of coffee, green tea, turmeric extract (ECGTT) against cardiac-metabolic syndrome (MetS). Methods: The secondary metabolites from coffee, green tea, and turmeric were identified using LC-HRMS. Male Sprague–Dawley rats were divided into four groups (n = 4) representing normal, MetS, MetS with ECGTT treatment doses: 300/100/150 mg/BW and 300/100/250 mg/BW group. Upon the end of treatment periods, expression of tumor necrosis factor-alpha (TNFα), interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), NADPH oxidase (NOX2), SERCA2a were measured from the heart. A computational approach including network pharmacology, protein-protein interaction (PPI) network, molecular docking, and dynamic was performed to understand the molecular mechanism of ECGTT against cardiac damage in MetS. Results: Chlorogenic acid (CGA), epigallocatechin gallate (EGCG), and curcumin were identified as the main metabolites in ECGTT. The ECGTT administration decreased the TNFα, IL-6, NF-κB, and NOX2 and increased SERCA2a expression(p<0.05). Moreover, the PPI result suggested that angiotensin II receptor type 1 (AGTR1) was the key regulator of cardiac injury-MetS induced. CGA, EGCG, and curcumin bind to AGTR1 with smaller binding energy than metformin and showed stability of structure and interaction among those metabolites into AGTR1. Conclusions: Coffee, green tea, and turmeric might prevent heart dysfunction in MetS through modulation of oxidative stress and inflammation.","PeriodicalId":43917,"journal":{"name":"Journal of Pharmacy & Pharmacognosy Research","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The analysis of coffee-green tea-turmeric combination against cardiac-metabolic syndrome using metabolite profiling, gene expression, and in silico approach\",\"authors\":\"Ermin Rachmawati, Mohammad S. Rohman, Nashi Widodo, Mifetika Lukitasari, Dwi A. Nugroho, Feri E. Hermanto, Mukhamad N. Kholis\",\"doi\":\"10.56499/jppres23.1702_11.6.961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: The development of functional drinks to inhibit oxidative stress and inflammation as a critical process in inducing heart damage in metabolic syndrome is required. Coffee, tea, and turmeric have all been shown to offer health advantages. Aims: To investigate the effect of coffee, green tea, turmeric extract (ECGTT) against cardiac-metabolic syndrome (MetS). Methods: The secondary metabolites from coffee, green tea, and turmeric were identified using LC-HRMS. Male Sprague–Dawley rats were divided into four groups (n = 4) representing normal, MetS, MetS with ECGTT treatment doses: 300/100/150 mg/BW and 300/100/250 mg/BW group. Upon the end of treatment periods, expression of tumor necrosis factor-alpha (TNFα), interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), NADPH oxidase (NOX2), SERCA2a were measured from the heart. A computational approach including network pharmacology, protein-protein interaction (PPI) network, molecular docking, and dynamic was performed to understand the molecular mechanism of ECGTT against cardiac damage in MetS. Results: Chlorogenic acid (CGA), epigallocatechin gallate (EGCG), and curcumin were identified as the main metabolites in ECGTT. The ECGTT administration decreased the TNFα, IL-6, NF-κB, and NOX2 and increased SERCA2a expression(p<0.05). Moreover, the PPI result suggested that angiotensin II receptor type 1 (AGTR1) was the key regulator of cardiac injury-MetS induced. CGA, EGCG, and curcumin bind to AGTR1 with smaller binding energy than metformin and showed stability of structure and interaction among those metabolites into AGTR1. Conclusions: Coffee, green tea, and turmeric might prevent heart dysfunction in MetS through modulation of oxidative stress and inflammation.\",\"PeriodicalId\":43917,\"journal\":{\"name\":\"Journal of Pharmacy & Pharmacognosy Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacy & Pharmacognosy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56499/jppres23.1702_11.6.961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy & Pharmacognosy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56499/jppres23.1702_11.6.961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The analysis of coffee-green tea-turmeric combination against cardiac-metabolic syndrome using metabolite profiling, gene expression, and in silico approach
Context: The development of functional drinks to inhibit oxidative stress and inflammation as a critical process in inducing heart damage in metabolic syndrome is required. Coffee, tea, and turmeric have all been shown to offer health advantages. Aims: To investigate the effect of coffee, green tea, turmeric extract (ECGTT) against cardiac-metabolic syndrome (MetS). Methods: The secondary metabolites from coffee, green tea, and turmeric were identified using LC-HRMS. Male Sprague–Dawley rats were divided into four groups (n = 4) representing normal, MetS, MetS with ECGTT treatment doses: 300/100/150 mg/BW and 300/100/250 mg/BW group. Upon the end of treatment periods, expression of tumor necrosis factor-alpha (TNFα), interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), NADPH oxidase (NOX2), SERCA2a were measured from the heart. A computational approach including network pharmacology, protein-protein interaction (PPI) network, molecular docking, and dynamic was performed to understand the molecular mechanism of ECGTT against cardiac damage in MetS. Results: Chlorogenic acid (CGA), epigallocatechin gallate (EGCG), and curcumin were identified as the main metabolites in ECGTT. The ECGTT administration decreased the TNFα, IL-6, NF-κB, and NOX2 and increased SERCA2a expression(p<0.05). Moreover, the PPI result suggested that angiotensin II receptor type 1 (AGTR1) was the key regulator of cardiac injury-MetS induced. CGA, EGCG, and curcumin bind to AGTR1 with smaller binding energy than metformin and showed stability of structure and interaction among those metabolites into AGTR1. Conclusions: Coffee, green tea, and turmeric might prevent heart dysfunction in MetS through modulation of oxidative stress and inflammation.
期刊介绍:
The Journal of Pharmacy & Pharmacognosy Research (JPPRes) is an international, specialized and peer-reviewed open access journal, under the auspices of AVAGAX – Diseño, Publicidad y Servicios Informáticos, which publishes studies in the pharmaceutical and herbal fields concerned with the physical, botanical, chemical, biological, toxicological properties and clinical applications of molecular entities, active pharmaceutical ingredients, devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture, evaluation and marketing. This journal publishes research papers, reviews, commentaries and letters to the editor as well as special issues and review of pre-and post-graduate thesis from pharmacists or professionals involved in Pharmaceutical Sciences or Pharmacognosy.