Gisella Luisa Elena Maquen-Niño, Jessie Bravo, Roger Alarcón, Ivan Adrianzén-Olano, Hugo Vega-Huerta
{"title":"利用机器学习对登革热分类模型进行系统回顾","authors":"Gisella Luisa Elena Maquen-Niño, Jessie Bravo, Roger Alarcón, Ivan Adrianzén-Olano, Hugo Vega-Huerta","doi":"10.17013/risti.50.5-27","DOIUrl":null,"url":null,"abstract":"El dengue es una enfermedad arboviral que anualmente reporta un gran número de infectados en la costa norte y la selva peruana. Según las estadísticas, está aumentando cada año. Este artículo tiene como objetivo desarrollar una revisión sistemática de la literatura científica sobre las variables de estudio y los métodos de aprendizaje automático utilizados actualmente para detectar la infección por dengue. La metodología utilizada fue PRISMA, mapeando inicialmente la literatura de 274 artículos científicos, quedando seleccionados 33 artículos para la revisión sistemática. Los resultados obtenidos son que los algoritmos de aprendizaje automático más utilizados son las redes neuronales (NN) y support vector machine (SVM). Asimismo, se ha encontrado que los científicos tienden a realizar investigaciones con variables climáticas o demográficas para obtener mejores resultados. Se concluye que los métodos de aprendizaje automático que más se han utilizado son las redes neuronales de diferentes tipos: convolucional, recurrente, profunda y multicapa, y para la predicción de brotes de dengue predominaron los métodos de series de tiempo con LSTM y ARIMA, también se estableció que la tendencia es hacia la inclusión de variables climáticas y demográficas en los modelos de predicción.","PeriodicalId":38722,"journal":{"name":"RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Una revisión sistemática de Modelos de clasificación de dengue utilizando machine learning\",\"authors\":\"Gisella Luisa Elena Maquen-Niño, Jessie Bravo, Roger Alarcón, Ivan Adrianzén-Olano, Hugo Vega-Huerta\",\"doi\":\"10.17013/risti.50.5-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El dengue es una enfermedad arboviral que anualmente reporta un gran número de infectados en la costa norte y la selva peruana. Según las estadísticas, está aumentando cada año. Este artículo tiene como objetivo desarrollar una revisión sistemática de la literatura científica sobre las variables de estudio y los métodos de aprendizaje automático utilizados actualmente para detectar la infección por dengue. La metodología utilizada fue PRISMA, mapeando inicialmente la literatura de 274 artículos científicos, quedando seleccionados 33 artículos para la revisión sistemática. Los resultados obtenidos son que los algoritmos de aprendizaje automático más utilizados son las redes neuronales (NN) y support vector machine (SVM). Asimismo, se ha encontrado que los científicos tienden a realizar investigaciones con variables climáticas o demográficas para obtener mejores resultados. Se concluye que los métodos de aprendizaje automático que más se han utilizado son las redes neuronales de diferentes tipos: convolucional, recurrente, profunda y multicapa, y para la predicción de brotes de dengue predominaron los métodos de series de tiempo con LSTM y ARIMA, también se estableció que la tendencia es hacia la inclusión de variables climáticas y demográficas en los modelos de predicción.\",\"PeriodicalId\":38722,\"journal\":{\"name\":\"RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17013/risti.50.5-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17013/risti.50.5-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Una revisión sistemática de Modelos de clasificación de dengue utilizando machine learning
El dengue es una enfermedad arboviral que anualmente reporta un gran número de infectados en la costa norte y la selva peruana. Según las estadísticas, está aumentando cada año. Este artículo tiene como objetivo desarrollar una revisión sistemática de la literatura científica sobre las variables de estudio y los métodos de aprendizaje automático utilizados actualmente para detectar la infección por dengue. La metodología utilizada fue PRISMA, mapeando inicialmente la literatura de 274 artículos científicos, quedando seleccionados 33 artículos para la revisión sistemática. Los resultados obtenidos son que los algoritmos de aprendizaje automático más utilizados son las redes neuronales (NN) y support vector machine (SVM). Asimismo, se ha encontrado que los científicos tienden a realizar investigaciones con variables climáticas o demográficas para obtener mejores resultados. Se concluye que los métodos de aprendizaje automático que más se han utilizado son las redes neuronales de diferentes tipos: convolucional, recurrente, profunda y multicapa, y para la predicción de brotes de dengue predominaron los métodos de series de tiempo con LSTM y ARIMA, también se estableció que la tendencia es hacia la inclusión de variables climáticas y demográficas en los modelos de predicción.