由单调凸函数生成的旋转表面上的曲线缩短流

IF 0.6 4区 数学 Q3 MATHEMATICS
Naotoshi FUJIHARA
{"title":"由单调凸函数生成的旋转表面上的曲线缩短流","authors":"Naotoshi FUJIHARA","doi":"10.2206/kyushujm.77.179","DOIUrl":null,"url":null,"abstract":"In this paper, we study curve shortening flows on rotational surfaces in ℝ3. We assume that the surfaces have negative Gauss curvatures and that some condition related to the Gauss curvature and the curvature of an embedded curve holds on them. Under these assumptions, we prove that the curve remains a graph over the parallels of the rotational surface along the flow. Also, we prove the comparison principle and the long-time existence of the flow.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CURVE SHORTENING FLOWS ON ROTATIONAL SURFACES GENERATED BY MONOTONE CONVEX FUNCTIONS\",\"authors\":\"Naotoshi FUJIHARA\",\"doi\":\"10.2206/kyushujm.77.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study curve shortening flows on rotational surfaces in ℝ3. We assume that the surfaces have negative Gauss curvatures and that some condition related to the Gauss curvature and the curvature of an embedded curve holds on them. Under these assumptions, we prove that the curve remains a graph over the parallels of the rotational surface along the flow. Also, we prove the comparison principle and the long-time existence of the flow.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.77.179\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2206/kyushujm.77.179","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了在旋转曲面上的曲线缩短流。我们假设曲面具有负高斯曲率,并且与高斯曲率和嵌入曲线的曲率有关的某些条件适用于它们。在这些假设下,我们证明了曲线仍然是沿流动的旋转表面的平行线上的图形。并证明了比较原理和流的长期存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CURVE SHORTENING FLOWS ON ROTATIONAL SURFACES GENERATED BY MONOTONE CONVEX FUNCTIONS
In this paper, we study curve shortening flows on rotational surfaces in ℝ3. We assume that the surfaces have negative Gauss curvatures and that some condition related to the Gauss curvature and the curvature of an embedded curve holds on them. Under these assumptions, we prove that the curve remains a graph over the parallels of the rotational surface along the flow. Also, we prove the comparison principle and the long-time existence of the flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total. More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信