粗糙积分的反向表示:一种基于分数微积分的方法

IF 0.6 4区 数学 Q3 MATHEMATICS
Yu ITO
{"title":"粗糙积分的反向表示:一种基于分数微积分的方法","authors":"Yu ITO","doi":"10.2206/kyushujm.77.367","DOIUrl":null,"url":null,"abstract":"On the basis of fractional calculus, the integral of controlled paths along Hölder rough paths is given explicitly as Lebesgue integrals for fractional derivative operators, without using any arguments from a discrete approximation. In this paper, we introduce a backward version of the integral and provide fundamental relations between both integrals from the perspective of the backward representation of the rough integral.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":"45-46 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BACKWARD REPRESENTATION OF THE ROUGH INTEGRAL: AN APPROACH BASED ON FRACTIONAL CALCULUS\",\"authors\":\"Yu ITO\",\"doi\":\"10.2206/kyushujm.77.367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of fractional calculus, the integral of controlled paths along Hölder rough paths is given explicitly as Lebesgue integrals for fractional derivative operators, without using any arguments from a discrete approximation. In this paper, we introduce a backward version of the integral and provide fundamental relations between both integrals from the perspective of the backward representation of the rough integral.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\"45-46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.77.367\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2206/kyushujm.77.367","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在分数阶微积分的基础上,以分数阶导数算子的勒贝格积分形式明确地给出了沿Hölder粗糙路径的控制路径的积分,而不使用任何离散近似的参数。本文从粗糙积分的后向表示的角度,引入了该积分的后向形式,并给出了两个积分之间的基本关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BACKWARD REPRESENTATION OF THE ROUGH INTEGRAL: AN APPROACH BASED ON FRACTIONAL CALCULUS
On the basis of fractional calculus, the integral of controlled paths along Hölder rough paths is given explicitly as Lebesgue integrals for fractional derivative operators, without using any arguments from a discrete approximation. In this paper, we introduce a backward version of the integral and provide fundamental relations between both integrals from the perspective of the backward representation of the rough integral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total. More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信