高维局部场上GL<i><sub>d </sub></i>

Pub Date : 2023-01-01 DOI:10.2206/kyushujm.77.271
Masaoki MORI
{"title":"高维局部场上GL&lt;i&gt;&lt;sub&gt;d &lt;/sub&gt;&lt;/i&gt","authors":"Masaoki MORI","doi":"10.2206/kyushujm.77.271","DOIUrl":null,"url":null,"abstract":"The aims of this paper are expansions of the measure theory in Fesenko (Amer. Math. Soc, Transl. Ser. 2 219 (2006)) and Waller (New York J. Math. 25 (2019), 396-442). We define countably additive translation-invariant measures and integrals on product spaces of F and of GLd(F), and on a parabolic subgroup of GLd(F). Moreover, we will prove that measurable functions on these product spaces are repeatedly integrable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEASURE THEORY ON GL&lt;i&gt;&lt;sub&gt;d &lt;/sub&gt;&lt;/i&gt;OVER A HIGHER-DIMENSIONAL LOCAL FIELD\",\"authors\":\"Masaoki MORI\",\"doi\":\"10.2206/kyushujm.77.271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aims of this paper are expansions of the measure theory in Fesenko (Amer. Math. Soc, Transl. Ser. 2 219 (2006)) and Waller (New York J. Math. 25 (2019), 396-442). We define countably additive translation-invariant measures and integrals on product spaces of F and of GLd(F), and on a parabolic subgroup of GLd(F). Moreover, we will prove that measurable functions on these product spaces are repeatedly integrable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.77.271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2206/kyushujm.77.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是对Fesenko (Amer)的测量理论进行扩展。数学。Soc, Transl。Ser. 2 219(2006))和Waller (New York J. Math. 25(2019), 396-442)。定义了F和GLd(F)的积空间以及GLd(F)的抛物子群上的可数可加平移不变测度和积分。此外,我们将证明这些积空间上的可测函数是重复可积的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
MEASURE THEORY ON GL<i><sub>d </sub></i>OVER A HIGHER-DIMENSIONAL LOCAL FIELD
The aims of this paper are expansions of the measure theory in Fesenko (Amer. Math. Soc, Transl. Ser. 2 219 (2006)) and Waller (New York J. Math. 25 (2019), 396-442). We define countably additive translation-invariant measures and integrals on product spaces of F and of GLd(F), and on a parabolic subgroup of GLd(F). Moreover, we will prove that measurable functions on these product spaces are repeatedly integrable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信