基于理化参数的一系列对称三嗪衍生物的线性定量结构-生态毒性关系建模

Q3 Engineering
Strahinja Kovacevic, Milica Karadzic-Banjac, Lidija Jevric, Sanja Podunavac-Kuzmanovic
{"title":"基于理化参数的一系列对称三嗪衍生物的线性定量结构-生态毒性关系建模","authors":"Strahinja Kovacevic, Milica Karadzic-Banjac, Lidija Jevric, Sanja Podunavac-Kuzmanovic","doi":"10.2298/apt2354255k","DOIUrl":null,"url":null,"abstract":"The present study reports the Quantitative Structure-Ecotoxicity Relationship (QSER) analysis of a series of 21 1,3,5-triazine derivatives based on multiple-linear regression (MLR) method. The ecotoxicity data were estimated by using in silico approach and included the following parameters: acute algae toxicity (AAT), acute daphnia toxicity (ADT), Daphnia Magna LC50 48h/EPA (DMepa) and Daphnia Magna LC50 48h/DEMETRA (DMdemetra). The ecotoxicity data were correlated with molecular descriptors selected by using the stepwise selection method. The considered molecular descriptors are lipophilicity descriptors (CrippenLogP, ALogp2), Autocorrelation Descriptor Mass (ATSm1, ATSm2, ATSm3, ATSm4), Autocorrelation Descriptor Charge (ATSc2), minimum E-states for (strong) hydrogen bond acceptors (minHBa), maximum E-states for (strong) hydrogen bond acceptors (maxHBa), second kappa shape index (Kier2), maximum atom-type E-State: ?:N:? (maxaaN), sum of path lengths starting from nitrogens (WTPT-5) and McGowan characteristic volume (McGowan_Volume). The modeling resulted in four statistically valid MLR models. The models were validated by the internal and external validation approaches. The external validation confirmed high predictive ability of the established MLRs.","PeriodicalId":7021,"journal":{"name":"Acta Periodica Technologica","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear quantitative structure-ecotoxicity relationship modeling of a series of symmetrical triazine derivatives based on physicochemical parameters\",\"authors\":\"Strahinja Kovacevic, Milica Karadzic-Banjac, Lidija Jevric, Sanja Podunavac-Kuzmanovic\",\"doi\":\"10.2298/apt2354255k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study reports the Quantitative Structure-Ecotoxicity Relationship (QSER) analysis of a series of 21 1,3,5-triazine derivatives based on multiple-linear regression (MLR) method. The ecotoxicity data were estimated by using in silico approach and included the following parameters: acute algae toxicity (AAT), acute daphnia toxicity (ADT), Daphnia Magna LC50 48h/EPA (DMepa) and Daphnia Magna LC50 48h/DEMETRA (DMdemetra). The ecotoxicity data were correlated with molecular descriptors selected by using the stepwise selection method. The considered molecular descriptors are lipophilicity descriptors (CrippenLogP, ALogp2), Autocorrelation Descriptor Mass (ATSm1, ATSm2, ATSm3, ATSm4), Autocorrelation Descriptor Charge (ATSc2), minimum E-states for (strong) hydrogen bond acceptors (minHBa), maximum E-states for (strong) hydrogen bond acceptors (maxHBa), second kappa shape index (Kier2), maximum atom-type E-State: ?:N:? (maxaaN), sum of path lengths starting from nitrogens (WTPT-5) and McGowan characteristic volume (McGowan_Volume). The modeling resulted in four statistically valid MLR models. The models were validated by the internal and external validation approaches. The external validation confirmed high predictive ability of the established MLRs.\",\"PeriodicalId\":7021,\"journal\":{\"name\":\"Acta Periodica Technologica\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Periodica Technologica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/apt2354255k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Periodica Technologica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/apt2354255k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了基于多元线性回归(MLR)方法的21个1,3,5-三嗪衍生物的定量结构-生态毒性关系(QSER)分析。生态毒性数据采用计算机模拟方法估算,包括急性藻类毒性(AAT)、急性水蚤毒性(ADT)、大水蚤LC50 48h/EPA (DMepa)和大水蚤LC50 48h/DEMETRA (DMdemetra)。采用逐步选择的方法,将生态毒性数据与选择的分子描述符进行关联。考虑的分子描述符是亲脂性描述符(CrippenLogP, ALogp2),自相关描述符质量(ATSm1, ATSm2, ATSm3, ATSm4),自相关描述符电荷(ATSc2),(强)氢键受体的最小e态(minHBa),(强)氢键受体的最大e态(maxHBa),第二kappa形状指数(Kier2),最大原子型e态:?:N:?(maxaaN),从氮(WTPT-5)出发的路径长度和McGowan特征体积(McGowan_Volume)。建模得到4个统计有效的MLR模型。通过内部和外部验证方法对模型进行了验证。外部验证证实了所建立的MLRs具有较高的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear quantitative structure-ecotoxicity relationship modeling of a series of symmetrical triazine derivatives based on physicochemical parameters
The present study reports the Quantitative Structure-Ecotoxicity Relationship (QSER) analysis of a series of 21 1,3,5-triazine derivatives based on multiple-linear regression (MLR) method. The ecotoxicity data were estimated by using in silico approach and included the following parameters: acute algae toxicity (AAT), acute daphnia toxicity (ADT), Daphnia Magna LC50 48h/EPA (DMepa) and Daphnia Magna LC50 48h/DEMETRA (DMdemetra). The ecotoxicity data were correlated with molecular descriptors selected by using the stepwise selection method. The considered molecular descriptors are lipophilicity descriptors (CrippenLogP, ALogp2), Autocorrelation Descriptor Mass (ATSm1, ATSm2, ATSm3, ATSm4), Autocorrelation Descriptor Charge (ATSc2), minimum E-states for (strong) hydrogen bond acceptors (minHBa), maximum E-states for (strong) hydrogen bond acceptors (maxHBa), second kappa shape index (Kier2), maximum atom-type E-State: ?:N:? (maxaaN), sum of path lengths starting from nitrogens (WTPT-5) and McGowan characteristic volume (McGowan_Volume). The modeling resulted in four statistically valid MLR models. The models were validated by the internal and external validation approaches. The external validation confirmed high predictive ability of the established MLRs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Periodica Technologica
Acta Periodica Technologica Engineering-Engineering (all)
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信