四阶Hardy-Sobolev方程:奇点与双临界指数

IF 1 3区 数学 Q1 MATHEMATICS
Hussein Cheikh Ali
{"title":"四阶Hardy-Sobolev方程:奇点与双临界指数","authors":"Hussein Cheikh Ali","doi":"10.3934/cpaa.2023112","DOIUrl":null,"url":null,"abstract":"In dimension $ N\\geq 5 $, and for $ 0< s<4 $ with $ \\gamma\\in \\mathbb{R} $, we study the existence of nontrivial weak solutions for the doubly critical problem$ \\Delta^2 u-\\frac{\\gamma}{|x|^4}u = |u|^{2^\\star_0-2}u+\\frac{|u|^{ 2_s^{\\star}-2}u}{|x|^s}\\hbox{ in } \\mathbb{R}_+^N, \\; u = \\Delta u = 0\\hbox{ on }\\partial \\mathbb{R}_+^N, $where $ 2_s^{\\star}: = \\frac{2(N-s)}{N-4} $ is the critical Hardy–Sobolev exponent. For $ N\\geq 8 $ and $ 0< \\gamma<\\frac{(N^2-4)^2}{16} $, we show the existence of nontrivial solution using the Mountain-Pass theorem by Ambrosetti-Rabinowitz. The method used is based on the existence of extremals for certain Hardy-Sobolev embeddings that we prove in this paper.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":"21 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourth order Hardy-Sobolev equations: Singularity and doubly critical exponent\",\"authors\":\"Hussein Cheikh Ali\",\"doi\":\"10.3934/cpaa.2023112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dimension $ N\\\\geq 5 $, and for $ 0< s<4 $ with $ \\\\gamma\\\\in \\\\mathbb{R} $, we study the existence of nontrivial weak solutions for the doubly critical problem$ \\\\Delta^2 u-\\\\frac{\\\\gamma}{|x|^4}u = |u|^{2^\\\\star_0-2}u+\\\\frac{|u|^{ 2_s^{\\\\star}-2}u}{|x|^s}\\\\hbox{ in } \\\\mathbb{R}_+^N, \\\\; u = \\\\Delta u = 0\\\\hbox{ on }\\\\partial \\\\mathbb{R}_+^N, $where $ 2_s^{\\\\star}: = \\\\frac{2(N-s)}{N-4} $ is the critical Hardy–Sobolev exponent. For $ N\\\\geq 8 $ and $ 0< \\\\gamma<\\\\frac{(N^2-4)^2}{16} $, we show the existence of nontrivial solution using the Mountain-Pass theorem by Ambrosetti-Rabinowitz. The method used is based on the existence of extremals for certain Hardy-Sobolev embeddings that we prove in this paper.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023112\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2023112","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在$ N\geq 5 $维,对于$ 0< s<4 $和$ \gamma\in \mathbb{R} $,我们研究了双临界问题$ \Delta^2 u-\frac{\gamma}{|x|^4}u = |u|^{2^\star_0-2}u+\frac{|u|^{ 2_s^{\star}-2}u}{|x|^s}\hbox{ in } \mathbb{R}_+^N, \; u = \Delta u = 0\hbox{ on }\partial \mathbb{R}_+^N, $的非平凡弱解的存在性,其中$ 2_s^{\star}: = \frac{2(N-s)}{N-4} $是临界Hardy-Sobolev指数。对于$ N\geq 8 $和$ 0< \gamma<\frac{(N^2-4)^2}{16} $,我们利用Ambrosetti-Rabinowitz的Mountain-Pass定理证明了非平凡解的存在性。所使用的方法是基于我们在文中证明的某些Hardy-Sobolev嵌入的极值的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourth order Hardy-Sobolev equations: Singularity and doubly critical exponent
In dimension $ N\geq 5 $, and for $ 0< s<4 $ with $ \gamma\in \mathbb{R} $, we study the existence of nontrivial weak solutions for the doubly critical problem$ \Delta^2 u-\frac{\gamma}{|x|^4}u = |u|^{2^\star_0-2}u+\frac{|u|^{ 2_s^{\star}-2}u}{|x|^s}\hbox{ in } \mathbb{R}_+^N, \; u = \Delta u = 0\hbox{ on }\partial \mathbb{R}_+^N, $where $ 2_s^{\star}: = \frac{2(N-s)}{N-4} $ is the critical Hardy–Sobolev exponent. For $ N\geq 8 $ and $ 0< \gamma<\frac{(N^2-4)^2}{16} $, we show the existence of nontrivial solution using the Mountain-Pass theorem by Ambrosetti-Rabinowitz. The method used is based on the existence of extremals for certain Hardy-Sobolev embeddings that we prove in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信