解链手术,分支封面,椭圆表面上的铅笔

IF 0.6 3区 数学 Q3 MATHEMATICS
Terry Fuller
{"title":"解链手术,分支封面,椭圆表面上的铅笔","authors":"Terry Fuller","doi":"10.2140/agt.2023.23.2867","DOIUrl":null,"url":null,"abstract":"We show that every member of an infinite family of symplectic manifolds constructed by R. Inanc Baykur, Kenta Hayano, and Naoyuki Monden (arXiv:1903:02906) is diffeomorphic to an elliptic surface. As a result: (1) the symplectic Calabi-Yau 4-manifolds among their family are diffeomorphic to the standard K3 surface; (2) each elliptic surface E(n) admits a genus g Lefschetz pencil, for all g greater than or equal to n; and (3) each elliptic surface E(n) blown up once admits a pair of inequivalent genus g Lefschetz pencils, for all g greater than or equal to n.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"152 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unchaining surgery, branched covers, and pencils on elliptic surfaces\",\"authors\":\"Terry Fuller\",\"doi\":\"10.2140/agt.2023.23.2867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that every member of an infinite family of symplectic manifolds constructed by R. Inanc Baykur, Kenta Hayano, and Naoyuki Monden (arXiv:1903:02906) is diffeomorphic to an elliptic surface. As a result: (1) the symplectic Calabi-Yau 4-manifolds among their family are diffeomorphic to the standard K3 surface; (2) each elliptic surface E(n) admits a genus g Lefschetz pencil, for all g greater than or equal to n; and (3) each elliptic surface E(n) blown up once admits a pair of inequivalent genus g Lefschetz pencils, for all g greater than or equal to n.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.2867\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2867","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了R. Inanc Baykur, Kenta Hayano和Naoyuki Monden (arXiv:1903:02906)构造的无限辛流形族的每一个成员都是微分同构于椭圆曲面的。结果表明:(1)它们族中的辛Calabi-Yau - 4流形与标准K3曲面是微分同构的;(2)对于所有大于等于n的g,每一个椭圆曲面E(n)都有一个Lefschetz铅笔属g;(3)对于所有大于或等于n的g,每个膨胀一次的椭圆曲面E(n)允许一对不相等的g属Lefschetz铅笔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unchaining surgery, branched covers, and pencils on elliptic surfaces
We show that every member of an infinite family of symplectic manifolds constructed by R. Inanc Baykur, Kenta Hayano, and Naoyuki Monden (arXiv:1903:02906) is diffeomorphic to an elliptic surface. As a result: (1) the symplectic Calabi-Yau 4-manifolds among their family are diffeomorphic to the standard K3 surface; (2) each elliptic surface E(n) admits a genus g Lefschetz pencil, for all g greater than or equal to n; and (3) each elliptic surface E(n) blown up once admits a pair of inequivalent genus g Lefschetz pencils, for all g greater than or equal to n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信