{"title":"小拉伸因子刺破的非定向曲面的伪anosov同胚","authors":"Sayantan Khan, Caleb Partin, Rebecca R. Winarski","doi":"10.2140/agt.2023.23.2823","DOIUrl":null,"url":null,"abstract":"We prove that in the non-orientable setting, the minimal stretch factor of a pseudo-Anosov homeomorphism of a surface of genus $g$ with a fixed number of punctures is asymptotically on the order of $\\frac{1}{g}$. Our result adapts the work of Yazdi to non-orientable surfaces. We include the details of Thurston's theory of fibered faces for non-orientable 3-manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pseudo-Anosov homeomorphisms of punctured nonorientable surfaces with small stretch factor\",\"authors\":\"Sayantan Khan, Caleb Partin, Rebecca R. Winarski\",\"doi\":\"10.2140/agt.2023.23.2823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that in the non-orientable setting, the minimal stretch factor of a pseudo-Anosov homeomorphism of a surface of genus $g$ with a fixed number of punctures is asymptotically on the order of $\\\\frac{1}{g}$. Our result adapts the work of Yazdi to non-orientable surfaces. We include the details of Thurston's theory of fibered faces for non-orientable 3-manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.2823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pseudo-Anosov homeomorphisms of punctured nonorientable surfaces with small stretch factor
We prove that in the non-orientable setting, the minimal stretch factor of a pseudo-Anosov homeomorphism of a surface of genus $g$ with a fixed number of punctures is asymptotically on the order of $\frac{1}{g}$. Our result adapts the work of Yazdi to non-orientable surfaces. We include the details of Thurston's theory of fibered faces for non-orientable 3-manifolds.