考克斯特型带2结组

IF 0.6 3区 数学 Q3 MATHEMATICS
Jens Harlander, Stephan Rosebrock
{"title":"考克斯特型带2结组","authors":"Jens Harlander, Stephan Rosebrock","doi":"10.2140/agt.2023.23.2715","DOIUrl":null,"url":null,"abstract":"Wirtinger presentations of deficiency 1 appear in the context of knots, long virtual knots, and ribbon 2-knots. They are encoded by (word) labeled oriented trees and, for that reason, are also called LOT presentations. These presentations are a well known and important testing ground for the validity (or failure) of Whitehead's asphericity conjecture. In this paper we define LOTs of Coxeter type and show that for every given $n$ there exists a (prime) LOT of Coxeter type with group of rank $n$. We also show that label separated Coxeter LOTs are aspherical.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"18 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ribbon 2–knot groups of Coxeter type\",\"authors\":\"Jens Harlander, Stephan Rosebrock\",\"doi\":\"10.2140/agt.2023.23.2715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wirtinger presentations of deficiency 1 appear in the context of knots, long virtual knots, and ribbon 2-knots. They are encoded by (word) labeled oriented trees and, for that reason, are also called LOT presentations. These presentations are a well known and important testing ground for the validity (or failure) of Whitehead's asphericity conjecture. In this paper we define LOTs of Coxeter type and show that for every given $n$ there exists a (prime) LOT of Coxeter type with group of rank $n$. We also show that label separated Coxeter LOTs are aspherical.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.2715\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2715","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Wirtinger缺陷1出现在结、长虚拟结和带2结的情况下。它们由(word)标记的面向树编码,因此也称为LOT表示。这些展示是怀特黑德非球面猜想的有效性(或失败)的一个众所周知的和重要的试验场。本文定义了Coxeter类型的LOT,并证明了对于每一个给定的$n$,存在一个(素数)Coxeter类型的LOT,其群的秩为$n$。我们还证明了标签分离的考克斯特批次是非球面的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ribbon 2–knot groups of Coxeter type
Wirtinger presentations of deficiency 1 appear in the context of knots, long virtual knots, and ribbon 2-knots. They are encoded by (word) labeled oriented trees and, for that reason, are also called LOT presentations. These presentations are a well known and important testing ground for the validity (or failure) of Whitehead's asphericity conjecture. In this paper we define LOTs of Coxeter type and show that for every given $n$ there exists a (prime) LOT of Coxeter type with group of rank $n$. We also show that label separated Coxeter LOTs are aspherical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信