{"title":"考克斯特型带2结组","authors":"Jens Harlander, Stephan Rosebrock","doi":"10.2140/agt.2023.23.2715","DOIUrl":null,"url":null,"abstract":"Wirtinger presentations of deficiency 1 appear in the context of knots, long virtual knots, and ribbon 2-knots. They are encoded by (word) labeled oriented trees and, for that reason, are also called LOT presentations. These presentations are a well known and important testing ground for the validity (or failure) of Whitehead's asphericity conjecture. In this paper we define LOTs of Coxeter type and show that for every given $n$ there exists a (prime) LOT of Coxeter type with group of rank $n$. We also show that label separated Coxeter LOTs are aspherical.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"18 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ribbon 2–knot groups of Coxeter type\",\"authors\":\"Jens Harlander, Stephan Rosebrock\",\"doi\":\"10.2140/agt.2023.23.2715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wirtinger presentations of deficiency 1 appear in the context of knots, long virtual knots, and ribbon 2-knots. They are encoded by (word) labeled oriented trees and, for that reason, are also called LOT presentations. These presentations are a well known and important testing ground for the validity (or failure) of Whitehead's asphericity conjecture. In this paper we define LOTs of Coxeter type and show that for every given $n$ there exists a (prime) LOT of Coxeter type with group of rank $n$. We also show that label separated Coxeter LOTs are aspherical.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.2715\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2715","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Wirtinger presentations of deficiency 1 appear in the context of knots, long virtual knots, and ribbon 2-knots. They are encoded by (word) labeled oriented trees and, for that reason, are also called LOT presentations. These presentations are a well known and important testing ground for the validity (or failure) of Whitehead's asphericity conjecture. In this paper we define LOTs of Coxeter type and show that for every given $n$ there exists a (prime) LOT of Coxeter type with group of rank $n$. We also show that label separated Coxeter LOTs are aspherical.