{"title":"纳米卫星任务软件的正式验证","authors":"Fernando Asteasuain","doi":"10.59471/raia202353","DOIUrl":null,"url":null,"abstract":"Space research industry has become one of the most successful domains in the last years. In particular, the development of nano satellites has emerged as a stunning field since its low costs of production. The software in charge of the satellite functioning must be carefully verified to check that system fulfills the expected behavior. In this work we provide a full, complete and declarative framework to formally validate software for nano satellite missions, including behavioral synthesis which is a distinguishable contribution in this field. When validating the satellite behavior we include requirements from different sources: on board computer, IoT protocols, operating system and mission properties. Our framework is based on the declarative and graphical language FVS (Feather Weight Visual Scenarios).","PeriodicalId":498476,"journal":{"name":"Revista Abierta de Informática Aplicada","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formal Validation of Software for Nano Satellite Missions\",\"authors\":\"Fernando Asteasuain\",\"doi\":\"10.59471/raia202353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space research industry has become one of the most successful domains in the last years. In particular, the development of nano satellites has emerged as a stunning field since its low costs of production. The software in charge of the satellite functioning must be carefully verified to check that system fulfills the expected behavior. In this work we provide a full, complete and declarative framework to formally validate software for nano satellite missions, including behavioral synthesis which is a distinguishable contribution in this field. When validating the satellite behavior we include requirements from different sources: on board computer, IoT protocols, operating system and mission properties. Our framework is based on the declarative and graphical language FVS (Feather Weight Visual Scenarios).\",\"PeriodicalId\":498476,\"journal\":{\"name\":\"Revista Abierta de Informática Aplicada\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Abierta de Informática Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59471/raia202353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Abierta de Informática Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59471/raia202353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formal Validation of Software for Nano Satellite Missions
Space research industry has become one of the most successful domains in the last years. In particular, the development of nano satellites has emerged as a stunning field since its low costs of production. The software in charge of the satellite functioning must be carefully verified to check that system fulfills the expected behavior. In this work we provide a full, complete and declarative framework to formally validate software for nano satellite missions, including behavioral synthesis which is a distinguishable contribution in this field. When validating the satellite behavior we include requirements from different sources: on board computer, IoT protocols, operating system and mission properties. Our framework is based on the declarative and graphical language FVS (Feather Weight Visual Scenarios).