Shahla Sohail, S Thenmozhi, Swetha Priyanka Jannu, R. Gayathiri
{"title":"基于小波变换和改进灰狼优化的高效医学图像压缩","authors":"Shahla Sohail, S Thenmozhi, Swetha Priyanka Jannu, R. Gayathiri","doi":"10.52549/ijeei.v11i3.4329","DOIUrl":null,"url":null,"abstract":"The use of medical images in diagnostic procedures is increasing, leadning to a significant rise in the memory and bandwidth requirements for preserving and transmitting these images. To address this issue, image compression techniques have garnered significant attention. These techniques are capable of reducing the data size necessary to represent an image, allowing for more efficient utilization of storage space and communication bandwidth by eliminating unnecessary information. Numerous research directions have focused on compressing medical images, but past approaches have been time-consuming and risked information loss. To trounce these limitations, this paper introduces an effiective method for reducing the size of medical images in telemedicine applications. The method utilizes Integer Wavelet Transform (IWT) and sophisticated algorithm. Primarily, input images undergo pre-processing with a circular median filter to eliminate noise and improve image quality. Subsequently, the pre-processed images are divided into multiple sub bands using IWT.Then, these sub bands are furhter divided into n X n non-overlapping matrices, and optimal coefficients are chosen by employing a modified grey wolf optimizer algorithm. Finally, the selected coefficients are encoded using Huffman coding for transmission. During decompression, the reverse process of image compression is applied. The introduced method is tested on various medical images, and the findings demonstrate its superior performance compared to previous methods, generating visually similar images with a smaller data size.","PeriodicalId":37618,"journal":{"name":"Indonesian Journal of Electrical Engineering and Informatics","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Medical Image Compression Based on Wavelet Transform and Modified Gray Wolf Optimization\",\"authors\":\"Shahla Sohail, S Thenmozhi, Swetha Priyanka Jannu, R. Gayathiri\",\"doi\":\"10.52549/ijeei.v11i3.4329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of medical images in diagnostic procedures is increasing, leadning to a significant rise in the memory and bandwidth requirements for preserving and transmitting these images. To address this issue, image compression techniques have garnered significant attention. These techniques are capable of reducing the data size necessary to represent an image, allowing for more efficient utilization of storage space and communication bandwidth by eliminating unnecessary information. Numerous research directions have focused on compressing medical images, but past approaches have been time-consuming and risked information loss. To trounce these limitations, this paper introduces an effiective method for reducing the size of medical images in telemedicine applications. The method utilizes Integer Wavelet Transform (IWT) and sophisticated algorithm. Primarily, input images undergo pre-processing with a circular median filter to eliminate noise and improve image quality. Subsequently, the pre-processed images are divided into multiple sub bands using IWT.Then, these sub bands are furhter divided into n X n non-overlapping matrices, and optimal coefficients are chosen by employing a modified grey wolf optimizer algorithm. Finally, the selected coefficients are encoded using Huffman coding for transmission. During decompression, the reverse process of image compression is applied. The introduced method is tested on various medical images, and the findings demonstrate its superior performance compared to previous methods, generating visually similar images with a smaller data size.\",\"PeriodicalId\":37618,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Informatics\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52549/ijeei.v11i3.4329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52549/ijeei.v11i3.4329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Efficient Medical Image Compression Based on Wavelet Transform and Modified Gray Wolf Optimization
The use of medical images in diagnostic procedures is increasing, leadning to a significant rise in the memory and bandwidth requirements for preserving and transmitting these images. To address this issue, image compression techniques have garnered significant attention. These techniques are capable of reducing the data size necessary to represent an image, allowing for more efficient utilization of storage space and communication bandwidth by eliminating unnecessary information. Numerous research directions have focused on compressing medical images, but past approaches have been time-consuming and risked information loss. To trounce these limitations, this paper introduces an effiective method for reducing the size of medical images in telemedicine applications. The method utilizes Integer Wavelet Transform (IWT) and sophisticated algorithm. Primarily, input images undergo pre-processing with a circular median filter to eliminate noise and improve image quality. Subsequently, the pre-processed images are divided into multiple sub bands using IWT.Then, these sub bands are furhter divided into n X n non-overlapping matrices, and optimal coefficients are chosen by employing a modified grey wolf optimizer algorithm. Finally, the selected coefficients are encoded using Huffman coding for transmission. During decompression, the reverse process of image compression is applied. The introduced method is tested on various medical images, and the findings demonstrate its superior performance compared to previous methods, generating visually similar images with a smaller data size.
期刊介绍:
The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation. Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction. Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging. Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems. Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data).