Diego Marcelo Lara-Haro, Juan Federico Villacis Uvidia, Juan Pablo Martínez Mesias, Nelson Rodrigo Lascano Aimacaña
{"title":"生产投入和收获量:对过渡作物的研究","authors":"Diego Marcelo Lara-Haro, Juan Federico Villacis Uvidia, Juan Pablo Martínez Mesias, Nelson Rodrigo Lascano Aimacaña","doi":"10.36314/cunori.v7i2.224","DOIUrl":null,"url":null,"abstract":"PROBLEMA: el aumento demográfico y la asegurabilidad alimentaria se ha convertido en un tema de alta convergencia en organismos internacionales, según la Organización de Naciones Unidas para la Alimentación y la Agricultura (FAO), esta necesidad induce en la elevada producción y el uso elevado de insumos de producción reduciendo la eficiencia en costos y eficacia en el volumen productivo. OBJETIVO: realizar modelos lineales bajo estándares de machine learning a los insumos frente al volumen cosechado. MÉTODO: para su resolución se aplica un modelo lineal machine learning bagging y boosting. RESULTADOS: los predictores más importantes según la estratificación de los componentes son la cantidad de herbicida, cantidad fq (N) y cantidad fq (NPK), además, las variables del modelo adjudican comportamiento directamente proporcional, es decir, los estimadores son positivos para cada elemento. CONCLUSIÓN: el mayor predictor, es decir, cantidad de herbicida, ayuda a que las hierbas perjudiciales que pueden sustraer los minerales y nutrientes a los cultivos crezcan, no obstante, estos pueden alterar los ecosistemas del suelo (microbiota) reduciendo considerablemente la calidad producto agrícola.","PeriodicalId":476949,"journal":{"name":"Revista ciencia multidisciplinaria CUNORI","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insumos de producción y cantidad cosechada: un estudio a los cultivos transitorios\",\"authors\":\"Diego Marcelo Lara-Haro, Juan Federico Villacis Uvidia, Juan Pablo Martínez Mesias, Nelson Rodrigo Lascano Aimacaña\",\"doi\":\"10.36314/cunori.v7i2.224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PROBLEMA: el aumento demográfico y la asegurabilidad alimentaria se ha convertido en un tema de alta convergencia en organismos internacionales, según la Organización de Naciones Unidas para la Alimentación y la Agricultura (FAO), esta necesidad induce en la elevada producción y el uso elevado de insumos de producción reduciendo la eficiencia en costos y eficacia en el volumen productivo. OBJETIVO: realizar modelos lineales bajo estándares de machine learning a los insumos frente al volumen cosechado. MÉTODO: para su resolución se aplica un modelo lineal machine learning bagging y boosting. RESULTADOS: los predictores más importantes según la estratificación de los componentes son la cantidad de herbicida, cantidad fq (N) y cantidad fq (NPK), además, las variables del modelo adjudican comportamiento directamente proporcional, es decir, los estimadores son positivos para cada elemento. CONCLUSIÓN: el mayor predictor, es decir, cantidad de herbicida, ayuda a que las hierbas perjudiciales que pueden sustraer los minerales y nutrientes a los cultivos crezcan, no obstante, estos pueden alterar los ecosistemas del suelo (microbiota) reduciendo considerablemente la calidad producto agrícola.\",\"PeriodicalId\":476949,\"journal\":{\"name\":\"Revista ciencia multidisciplinaria CUNORI\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista ciencia multidisciplinaria CUNORI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36314/cunori.v7i2.224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista ciencia multidisciplinaria CUNORI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36314/cunori.v7i2.224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Insumos de producción y cantidad cosechada: un estudio a los cultivos transitorios
PROBLEMA: el aumento demográfico y la asegurabilidad alimentaria se ha convertido en un tema de alta convergencia en organismos internacionales, según la Organización de Naciones Unidas para la Alimentación y la Agricultura (FAO), esta necesidad induce en la elevada producción y el uso elevado de insumos de producción reduciendo la eficiencia en costos y eficacia en el volumen productivo. OBJETIVO: realizar modelos lineales bajo estándares de machine learning a los insumos frente al volumen cosechado. MÉTODO: para su resolución se aplica un modelo lineal machine learning bagging y boosting. RESULTADOS: los predictores más importantes según la estratificación de los componentes son la cantidad de herbicida, cantidad fq (N) y cantidad fq (NPK), además, las variables del modelo adjudican comportamiento directamente proporcional, es decir, los estimadores son positivos para cada elemento. CONCLUSIÓN: el mayor predictor, es decir, cantidad de herbicida, ayuda a que las hierbas perjudiciales que pueden sustraer los minerales y nutrientes a los cultivos crezcan, no obstante, estos pueden alterar los ecosistemas del suelo (microbiota) reduciendo considerablemente la calidad producto agrícola.