三种双面光伏电池聚光集热器的热性能。第一部分:实验和计算流体动力学研究

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Miguel Lança, João Gomes, Diogo Cabral
{"title":"三种双面光伏电池聚光集热器的热性能。第一部分:实验和计算流体动力学研究","authors":"Miguel Lança, João Gomes, Diogo Cabral","doi":"10.1177/09576509231197881","DOIUrl":null,"url":null,"abstract":"Bifacial photovoltaic cells can produce electricity from incoming solar radiation on both sides. These cells have a strong potential to reduce electricity generation costs and may play an important role in the energy system of the future. However, today, these cells are mostly deployed with one side receiving only ground reflection, which leads to a profound sub-optimal utilization of one of the sides of the bifacial cells. Concentration allows a better usage of the potential of bifacial cells, which can lead to a lower cost per kWh. However, concentration also adds complexity due to the higher temperatures reached which add the requirement of cooling in order to achieve higher outputs. This way, this paper focuses on the effectiveness of forced air circulation methods by comparing the thermal performance of three specific concentrating bi-facial collector designs. This paper developed a computational model, using ANSYS Fluent intending to assess the thermal performance of a covered concentrating collector with bifacial Photovoltaic (PV) cells. These results have then been validated by outdoor measurements. Results show that even a simple natural ventilation mechanism such as removing the side gable can effectively reduce the receiver temperature, thus resulting in favourable cell operation conditions when compared to the case of an airtight collector. Therefore, compared with a standard model, a decrease of 13.5% on the cell operating temperature was reported when the side gables are removed. However, when forced ventilation is apllied a 22.8% reduction on temperature is found compared to the standard air-tight model. The validated CFD model has proven to be a useful and robust tool for the thermal analysis of solar concentrating systems.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal performance of three concentrating collectors with bifacial photovoltaic cells part I – Experimental and computational fluid dynamics study\",\"authors\":\"Miguel Lança, João Gomes, Diogo Cabral\",\"doi\":\"10.1177/09576509231197881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bifacial photovoltaic cells can produce electricity from incoming solar radiation on both sides. These cells have a strong potential to reduce electricity generation costs and may play an important role in the energy system of the future. However, today, these cells are mostly deployed with one side receiving only ground reflection, which leads to a profound sub-optimal utilization of one of the sides of the bifacial cells. Concentration allows a better usage of the potential of bifacial cells, which can lead to a lower cost per kWh. However, concentration also adds complexity due to the higher temperatures reached which add the requirement of cooling in order to achieve higher outputs. This way, this paper focuses on the effectiveness of forced air circulation methods by comparing the thermal performance of three specific concentrating bi-facial collector designs. This paper developed a computational model, using ANSYS Fluent intending to assess the thermal performance of a covered concentrating collector with bifacial Photovoltaic (PV) cells. These results have then been validated by outdoor measurements. Results show that even a simple natural ventilation mechanism such as removing the side gable can effectively reduce the receiver temperature, thus resulting in favourable cell operation conditions when compared to the case of an airtight collector. Therefore, compared with a standard model, a decrease of 13.5% on the cell operating temperature was reported when the side gables are removed. However, when forced ventilation is apllied a 22.8% reduction on temperature is found compared to the standard air-tight model. The validated CFD model has proven to be a useful and robust tool for the thermal analysis of solar concentrating systems.\",\"PeriodicalId\":20705,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09576509231197881\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09576509231197881","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

双面光伏电池可以从两侧入射的太阳辐射中产生电能。这些电池具有降低发电成本的强大潜力,并可能在未来的能源系统中发挥重要作用。然而,今天,这些电池大多部署在一侧只接收地面反射,这导致双面电池的一侧利用率严重低于最佳水平。浓缩允许更好地利用双面电池的潜力,这可以降低每千瓦时的成本。然而,由于达到更高的温度,浓缩也增加了复杂性,这增加了冷却的要求,以达到更高的产量。这样,本文通过比较三种特定的浓缩双面集热器设计的热性能来关注强制空气循环方法的有效性。本文利用ANSYS Fluent建立了一个计算模型,旨在评估带有双面光伏(PV)电池的封闭式聚光集热器的热性能。这些结果随后通过室外测量得到了验证。结果表明,即使是简单的自然通风机制,如去除侧山墙,也能有效降低接收器温度,从而与密闭收集器的情况相比,产生有利的电池运行条件。因此,与标准模型相比,当侧山墙被移除时,电池工作温度降低了13.5%。然而,与标准气密模型相比,采用强制通风时温度降低了22.8%。经过验证的CFD模型已被证明是太阳能聚光系统热分析的一个有用且可靠的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal performance of three concentrating collectors with bifacial photovoltaic cells part I – Experimental and computational fluid dynamics study
Bifacial photovoltaic cells can produce electricity from incoming solar radiation on both sides. These cells have a strong potential to reduce electricity generation costs and may play an important role in the energy system of the future. However, today, these cells are mostly deployed with one side receiving only ground reflection, which leads to a profound sub-optimal utilization of one of the sides of the bifacial cells. Concentration allows a better usage of the potential of bifacial cells, which can lead to a lower cost per kWh. However, concentration also adds complexity due to the higher temperatures reached which add the requirement of cooling in order to achieve higher outputs. This way, this paper focuses on the effectiveness of forced air circulation methods by comparing the thermal performance of three specific concentrating bi-facial collector designs. This paper developed a computational model, using ANSYS Fluent intending to assess the thermal performance of a covered concentrating collector with bifacial Photovoltaic (PV) cells. These results have then been validated by outdoor measurements. Results show that even a simple natural ventilation mechanism such as removing the side gable can effectively reduce the receiver temperature, thus resulting in favourable cell operation conditions when compared to the case of an airtight collector. Therefore, compared with a standard model, a decrease of 13.5% on the cell operating temperature was reported when the side gables are removed. However, when forced ventilation is apllied a 22.8% reduction on temperature is found compared to the standard air-tight model. The validated CFD model has proven to be a useful and robust tool for the thermal analysis of solar concentrating systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信