非均相催化剂金属氧化物层状双氢氧化物在4-甲基二苯并噻吩氧化脱硫过程中的循环性能

Nur Ahmad, Rohmatullaili Rohmatullaili, Yulizah Hanifah, Sahrul Wibiyan, Amri Amri, Alfan Wijaya, Mardiyanto Mardiyanto, Risfidian Mohadi, Idha Royani, Aldes Lesbani
{"title":"非均相催化剂金属氧化物层状双氢氧化物在4-甲基二苯并噻吩氧化脱硫过程中的循环性能","authors":"Nur Ahmad, Rohmatullaili Rohmatullaili, Yulizah Hanifah, Sahrul Wibiyan, Amri Amri, Alfan Wijaya, Mardiyanto Mardiyanto, Risfidian Mohadi, Idha Royani, Aldes Lesbani","doi":"10.9767/bcrec.20034","DOIUrl":null,"url":null,"abstract":"The desulfurization of oil must be resolved as soon as possible due to a variety of issues, including environmental contamination and protection regulations. It was believed that oxidative desulfurization (ODS) was the most promising method. In this research, metal oxide-based layered double hydroxides (TiO2@Ni-Al and ZnO@Ni-Al) were effectively synthesized for the ODS of 4-methyldibenzothiophene (4-MDBT). TiO2@Ni-Al and ZnO@Ni-Al exhibited superior catalytic performance and high recycling capacity, achieving a 99% removal rate after five reactions in 30 min. The heterogeneous catalyst TiO2@Ni-Al/ZnO@Ni-Al is easy to separate and recover from a reaction system. Increased temperature facilitates the transformation of 4-MDBT into 4-MDBTO2. The influence of H2O2's rapid decomposition rate, which can inhibit oxidation reactions, reduces the catalytic activity as the temperature increases. 4-MDBT Sulphur removal on TiO2@Ni-Al and ZnO@Ni-Al is 99.48 and 99.51%, respectively. TiO2@Ni-Al and ZnO@Ni-Al have great potential for use in the industry based on these results. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":9329,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recycle Performance of Heterogeneous Catalyst Metal Oxides-Based Layered Double Hydroxide for Oxidative Desulfurization Process of 4-methyldibenzothiophene\",\"authors\":\"Nur Ahmad, Rohmatullaili Rohmatullaili, Yulizah Hanifah, Sahrul Wibiyan, Amri Amri, Alfan Wijaya, Mardiyanto Mardiyanto, Risfidian Mohadi, Idha Royani, Aldes Lesbani\",\"doi\":\"10.9767/bcrec.20034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The desulfurization of oil must be resolved as soon as possible due to a variety of issues, including environmental contamination and protection regulations. It was believed that oxidative desulfurization (ODS) was the most promising method. In this research, metal oxide-based layered double hydroxides (TiO2@Ni-Al and ZnO@Ni-Al) were effectively synthesized for the ODS of 4-methyldibenzothiophene (4-MDBT). TiO2@Ni-Al and ZnO@Ni-Al exhibited superior catalytic performance and high recycling capacity, achieving a 99% removal rate after five reactions in 30 min. The heterogeneous catalyst TiO2@Ni-Al/ZnO@Ni-Al is easy to separate and recover from a reaction system. Increased temperature facilitates the transformation of 4-MDBT into 4-MDBTO2. The influence of H2O2's rapid decomposition rate, which can inhibit oxidation reactions, reduces the catalytic activity as the temperature increases. 4-MDBT Sulphur removal on TiO2@Ni-Al and ZnO@Ni-Al is 99.48 and 99.51%, respectively. TiO2@Ni-Al and ZnO@Ni-Al have great potential for use in the industry based on these results. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).\",\"PeriodicalId\":9329,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.20034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.20034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于环境污染和保护法规等各种问题,必须尽快解决石油的脱硫问题。认为氧化脱硫法(ODS)是最有前途的方法。本研究制备了基于金属氧化物的层状双氢氧化物(TiO2@Ni-Al和ZnO@Ni-Al)用于4-甲基二苯并噻吩(4-MDBT)的ODS。TiO2@Ni-Al和ZnO@Ni-Al表现出优异的催化性能和较高的回收能力,在30 min内经过5次反应,去除率达到99%。TiO2@Ni-Al/ZnO@Ni-Al多相催化剂易于从反应体系中分离和回收。温度升高有利于4-MDBT向4-MDBTO2的转变。H2O2分解速度快,对氧化反应有抑制作用,随着温度的升高,催化活性降低。4-MDBT在TiO2@Ni-Al和ZnO@Ni-Al上的硫去除率分别为99.48%和99.51%。基于这些结果,TiO2@Ni-Al和ZnO@Ni-Al具有很大的工业应用潜力。版权所有©2023作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recycle Performance of Heterogeneous Catalyst Metal Oxides-Based Layered Double Hydroxide for Oxidative Desulfurization Process of 4-methyldibenzothiophene
The desulfurization of oil must be resolved as soon as possible due to a variety of issues, including environmental contamination and protection regulations. It was believed that oxidative desulfurization (ODS) was the most promising method. In this research, metal oxide-based layered double hydroxides (TiO2@Ni-Al and ZnO@Ni-Al) were effectively synthesized for the ODS of 4-methyldibenzothiophene (4-MDBT). TiO2@Ni-Al and ZnO@Ni-Al exhibited superior catalytic performance and high recycling capacity, achieving a 99% removal rate after five reactions in 30 min. The heterogeneous catalyst TiO2@Ni-Al/ZnO@Ni-Al is easy to separate and recover from a reaction system. Increased temperature facilitates the transformation of 4-MDBT into 4-MDBTO2. The influence of H2O2's rapid decomposition rate, which can inhibit oxidation reactions, reduces the catalytic activity as the temperature increases. 4-MDBT Sulphur removal on TiO2@Ni-Al and ZnO@Ni-Al is 99.48 and 99.51%, respectively. TiO2@Ni-Al and ZnO@Ni-Al have great potential for use in the industry based on these results. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信