一维玻色-爱因斯坦凝聚体中声波黑洞形成的研究

Haoquan Xu, Qingru Wang, Ying Wang, Qi Zhang, Xiaomei Liu, Chaohui Li
{"title":"一维玻色-爱因斯坦凝聚体中声波黑洞形成的研究","authors":"Haoquan Xu, Qingru Wang, Ying Wang, Qi Zhang, Xiaomei Liu, Chaohui Li","doi":"10.56557/japsi/2023/v15i28411","DOIUrl":null,"url":null,"abstract":"Based on the one-dimensional Gross-Pitaevskii equation (GPE) model, this work studies the formation of acoustic black holes in one-dimensional Bose Einstein condensate (BEC) in harmonic oscillator external potential, and extending the applicable scenarios of the GPE model for its specific application of simulating the formation conditions of acoustic black holes in one-dimensional systems. At the same time, We deepen the understanding of the analytical formula for determining the production conditions of acoustic black holes and the evolution formula of the radius of acoustic black holes.","PeriodicalId":322062,"journal":{"name":"Journal of Applied Physical Science International","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Formation of Sonic Black Hole in One-Dimensional Bose-Einstein Condensate\",\"authors\":\"Haoquan Xu, Qingru Wang, Ying Wang, Qi Zhang, Xiaomei Liu, Chaohui Li\",\"doi\":\"10.56557/japsi/2023/v15i28411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the one-dimensional Gross-Pitaevskii equation (GPE) model, this work studies the formation of acoustic black holes in one-dimensional Bose Einstein condensate (BEC) in harmonic oscillator external potential, and extending the applicable scenarios of the GPE model for its specific application of simulating the formation conditions of acoustic black holes in one-dimensional systems. At the same time, We deepen the understanding of the analytical formula for determining the production conditions of acoustic black holes and the evolution formula of the radius of acoustic black holes.\",\"PeriodicalId\":322062,\"journal\":{\"name\":\"Journal of Applied Physical Science International\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physical Science International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56557/japsi/2023/v15i28411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physical Science International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/japsi/2023/v15i28411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以一维Gross-Pitaevskii方程(GPE)模型为基础,研究了谐振子外势下一维玻色-爱因斯坦凝聚(BEC)中声黑洞的形成,并将GPE模型的适用场景进行了扩展,使其具体应用于模拟一维系统中声黑洞的形成条件。同时,加深了对确定声黑洞产生条件的解析公式和声黑洞半径演化公式的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Study of Formation of Sonic Black Hole in One-Dimensional Bose-Einstein Condensate
Based on the one-dimensional Gross-Pitaevskii equation (GPE) model, this work studies the formation of acoustic black holes in one-dimensional Bose Einstein condensate (BEC) in harmonic oscillator external potential, and extending the applicable scenarios of the GPE model for its specific application of simulating the formation conditions of acoustic black holes in one-dimensional systems. At the same time, We deepen the understanding of the analytical formula for determining the production conditions of acoustic black holes and the evolution formula of the radius of acoustic black holes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信