{"title":"射流冲击透水板的声学特性","authors":"Abhijit Dhamanekar, K Srinivasan","doi":"10.1177/1475472x231206496","DOIUrl":null,"url":null,"abstract":"This article explores the acoustic characteristics and the relevant flow features of jets impinging on permeable plates. Noise generated due to the interaction of the jet with permeable plates is compared with jets impinging on an impermeable plate and the corresponding free jet. This study systematically measures various parameters, including pore size, porosity, and pressure drop, to precisely quantify the permeability of the plates using the Forchheimer equation. The focus is on investigating the impact of permeability on noise reduction. An acoustic study is performed by carrying out blow-up and blow-down tests to find the effect of permeability at different nozzle pressure ratios and different nozzle-plate spacings. An extensive directivity study is conducted to find the directionality of acoustic emissions and calculate acoustic power. It is found that the overall sound pressure level is lower for the jets impinging on the permeable plates compared to the impermeable plates in subsonic cases. It is also observed that the insertion of the permeable plates in supersonic jets generates less noise compared to the corresponding free jet. It is found that most of the tones are absent in the case of permeable plates for supersonic jets, whereas the tones are present with lesser amplitude compared to jets impinging on impermeable plates for subsonic and transonic jets. Finally, flow measurement and flow visualization studies are carried out to understand the flow physics responsible for the noise variance. This study illuminates that the passage of flow through the porous plate results in the reduction of wall-jet velocities, thereby suppressing the turbulent mixing noise. The absence of shock oscillations in front of the permeable plate is identified as the cause of the mitigation of impinging tones.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"11 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic characteristics of jets impinging on permeable plates\",\"authors\":\"Abhijit Dhamanekar, K Srinivasan\",\"doi\":\"10.1177/1475472x231206496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores the acoustic characteristics and the relevant flow features of jets impinging on permeable plates. Noise generated due to the interaction of the jet with permeable plates is compared with jets impinging on an impermeable plate and the corresponding free jet. This study systematically measures various parameters, including pore size, porosity, and pressure drop, to precisely quantify the permeability of the plates using the Forchheimer equation. The focus is on investigating the impact of permeability on noise reduction. An acoustic study is performed by carrying out blow-up and blow-down tests to find the effect of permeability at different nozzle pressure ratios and different nozzle-plate spacings. An extensive directivity study is conducted to find the directionality of acoustic emissions and calculate acoustic power. It is found that the overall sound pressure level is lower for the jets impinging on the permeable plates compared to the impermeable plates in subsonic cases. It is also observed that the insertion of the permeable plates in supersonic jets generates less noise compared to the corresponding free jet. It is found that most of the tones are absent in the case of permeable plates for supersonic jets, whereas the tones are present with lesser amplitude compared to jets impinging on impermeable plates for subsonic and transonic jets. Finally, flow measurement and flow visualization studies are carried out to understand the flow physics responsible for the noise variance. This study illuminates that the passage of flow through the porous plate results in the reduction of wall-jet velocities, thereby suppressing the turbulent mixing noise. The absence of shock oscillations in front of the permeable plate is identified as the cause of the mitigation of impinging tones.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472x231206496\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1475472x231206496","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Acoustic characteristics of jets impinging on permeable plates
This article explores the acoustic characteristics and the relevant flow features of jets impinging on permeable plates. Noise generated due to the interaction of the jet with permeable plates is compared with jets impinging on an impermeable plate and the corresponding free jet. This study systematically measures various parameters, including pore size, porosity, and pressure drop, to precisely quantify the permeability of the plates using the Forchheimer equation. The focus is on investigating the impact of permeability on noise reduction. An acoustic study is performed by carrying out blow-up and blow-down tests to find the effect of permeability at different nozzle pressure ratios and different nozzle-plate spacings. An extensive directivity study is conducted to find the directionality of acoustic emissions and calculate acoustic power. It is found that the overall sound pressure level is lower for the jets impinging on the permeable plates compared to the impermeable plates in subsonic cases. It is also observed that the insertion of the permeable plates in supersonic jets generates less noise compared to the corresponding free jet. It is found that most of the tones are absent in the case of permeable plates for supersonic jets, whereas the tones are present with lesser amplitude compared to jets impinging on impermeable plates for subsonic and transonic jets. Finally, flow measurement and flow visualization studies are carried out to understand the flow physics responsible for the noise variance. This study illuminates that the passage of flow through the porous plate results in the reduction of wall-jet velocities, thereby suppressing the turbulent mixing noise. The absence of shock oscillations in front of the permeable plate is identified as the cause of the mitigation of impinging tones.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.