{"title":"和平与系统性战争之间的过渡是一个有符号网络动力系统的分岔","authors":"Megan Morrison, J. Nathan Kutz, Michael Gabbay","doi":"10.1017/nws.2023.10","DOIUrl":null,"url":null,"abstract":"Abstract We investigate structural features and processes associated with the onset of systemic conflict using an approach which integrates complex systems theory with network modeling and analysis. We present a signed network model of cooperation and conflict dynamics in the context of international relations between states. The model evolves ties between nodes under the influence of a structural balance force and a dyad-specific force. Model simulations exhibit a sharp bifurcation from peace to systemic war as structural balance pressures increase, a bistable regime in which both peace and war stable equilibria exist, and a hysteretic reverse bifurcation from war to peace. We show how the analytical expression we derive for the peace-to-war bifurcation condition implies that polarized network structure increases susceptibility to systemic war. We develop a framework for identifying patterns of relationship perturbations that are most destabilizing and apply it to the network of European great powers before World War I. We also show that the model exhibits critical slowing down, in which perturbations to the peace equilibrium take longer to decay as the system draws closer to the bifurcation. We discuss how our results relate to international relations theories on the causes and catalysts of systemic war.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transitions between peace and systemic war as bifurcations in a signed network dynamical system\",\"authors\":\"Megan Morrison, J. Nathan Kutz, Michael Gabbay\",\"doi\":\"10.1017/nws.2023.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate structural features and processes associated with the onset of systemic conflict using an approach which integrates complex systems theory with network modeling and analysis. We present a signed network model of cooperation and conflict dynamics in the context of international relations between states. The model evolves ties between nodes under the influence of a structural balance force and a dyad-specific force. Model simulations exhibit a sharp bifurcation from peace to systemic war as structural balance pressures increase, a bistable regime in which both peace and war stable equilibria exist, and a hysteretic reverse bifurcation from war to peace. We show how the analytical expression we derive for the peace-to-war bifurcation condition implies that polarized network structure increases susceptibility to systemic war. We develop a framework for identifying patterns of relationship perturbations that are most destabilizing and apply it to the network of European great powers before World War I. We also show that the model exhibits critical slowing down, in which perturbations to the peace equilibrium take longer to decay as the system draws closer to the bifurcation. We discuss how our results relate to international relations theories on the causes and catalysts of systemic war.\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2023.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2023.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Transitions between peace and systemic war as bifurcations in a signed network dynamical system
Abstract We investigate structural features and processes associated with the onset of systemic conflict using an approach which integrates complex systems theory with network modeling and analysis. We present a signed network model of cooperation and conflict dynamics in the context of international relations between states. The model evolves ties between nodes under the influence of a structural balance force and a dyad-specific force. Model simulations exhibit a sharp bifurcation from peace to systemic war as structural balance pressures increase, a bistable regime in which both peace and war stable equilibria exist, and a hysteretic reverse bifurcation from war to peace. We show how the analytical expression we derive for the peace-to-war bifurcation condition implies that polarized network structure increases susceptibility to systemic war. We develop a framework for identifying patterns of relationship perturbations that are most destabilizing and apply it to the network of European great powers before World War I. We also show that the model exhibits critical slowing down, in which perturbations to the peace equilibrium take longer to decay as the system draws closer to the bifurcation. We discuss how our results relate to international relations theories on the causes and catalysts of systemic war.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.