{"title":"基于深度学习的可再生能源大数据异常检测","authors":"Suzan MohammadAli Katamoura, Mehmet Sabih Aksoy","doi":"10.4018/ijiit.331595","DOIUrl":null,"url":null,"abstract":"This work aims to review the literature on anomaly detection (AD) in renewable energy. Due to the significance of the RE data quality and sensor performance, it is crucial to ensure that the measurement device works correctly and maintains data accuracy. The review identifies the relevant studies on big data anomaly detection in the energy field and synthesizes the related techniques. Also, the study shows a need for segmentation annotations for solar system electroluminescence imagery complicating the domain development of anomaly segmentation approaches. Consequently, most processes create machine learning (ML) models using semi-supervised techniques. Still, these approaches need more generalization regarding variation in environmental or systematic conditions. Furthermore, the studies discussed here focus on existing algorithms that used big data and AD to propose an improved analysis framework. Finally, the work presents a framework to solve the problem of identifying sensors' issues that will appear in data anomalies.","PeriodicalId":43967,"journal":{"name":"International Journal of Intelligent Information Technologies","volume":"40 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Detection in Renewable Energy Big Data Using Deep Learning\",\"authors\":\"Suzan MohammadAli Katamoura, Mehmet Sabih Aksoy\",\"doi\":\"10.4018/ijiit.331595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to review the literature on anomaly detection (AD) in renewable energy. Due to the significance of the RE data quality and sensor performance, it is crucial to ensure that the measurement device works correctly and maintains data accuracy. The review identifies the relevant studies on big data anomaly detection in the energy field and synthesizes the related techniques. Also, the study shows a need for segmentation annotations for solar system electroluminescence imagery complicating the domain development of anomaly segmentation approaches. Consequently, most processes create machine learning (ML) models using semi-supervised techniques. Still, these approaches need more generalization regarding variation in environmental or systematic conditions. Furthermore, the studies discussed here focus on existing algorithms that used big data and AD to propose an improved analysis framework. Finally, the work presents a framework to solve the problem of identifying sensors' issues that will appear in data anomalies.\",\"PeriodicalId\":43967,\"journal\":{\"name\":\"International Journal of Intelligent Information Technologies\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijiit.331595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijiit.331595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Anomaly Detection in Renewable Energy Big Data Using Deep Learning
This work aims to review the literature on anomaly detection (AD) in renewable energy. Due to the significance of the RE data quality and sensor performance, it is crucial to ensure that the measurement device works correctly and maintains data accuracy. The review identifies the relevant studies on big data anomaly detection in the energy field and synthesizes the related techniques. Also, the study shows a need for segmentation annotations for solar system electroluminescence imagery complicating the domain development of anomaly segmentation approaches. Consequently, most processes create machine learning (ML) models using semi-supervised techniques. Still, these approaches need more generalization regarding variation in environmental or systematic conditions. Furthermore, the studies discussed here focus on existing algorithms that used big data and AD to propose an improved analysis framework. Finally, the work presents a framework to solve the problem of identifying sensors' issues that will appear in data anomalies.
期刊介绍:
The International Journal of Intelligent Information Technologies (IJIIT) encourages quality research dealing with (but not limited to) the following topics: •Agent-based auction, contracting, negotiation, and ecommerce •Agent-based control and supply chain •Agent-based simulation and application integration •Cooperative and collaborative systems •Distributed intelligent systems and technologies •Human-agent interaction and experimental evaluation •Implementation, deployment, diffusion, and organizational impact •Integrating business intelligence from internal and external sources •Intelligent agent and multi-agent systems in various domains •Intelligent decision support systems