关于具有均匀横向结构的横向全纯叶理

Q3 Mathematics
Liliana Jurado, Bruno Scardua
{"title":"关于具有均匀横向结构的横向全纯叶理","authors":"Liliana Jurado, Bruno Scardua","doi":"10.15673/pigc.v16i3.2304","DOIUrl":null,"url":null,"abstract":"In this paper we study transversely holomorphic foliations of complex codimension one with a transversely homogeneous complex transverse structure. We prove that the only cases are the transversely additive, affine and projective cases. We shall focus on the transversely affine case and describe the holonomy of a leaf which is \"at the infinity\" with respect to this structure and prove this is a solvable group. Using this we are able to prove linearization results for the foliation under the assumption of existence of some hyperbolic map in the holonomy group. Such foliations will then be given by simple-poles closed transversely meromorphic one-forms.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"105 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On transversely holomorphic foliations with homogeneous transverse structure\",\"authors\":\"Liliana Jurado, Bruno Scardua\",\"doi\":\"10.15673/pigc.v16i3.2304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study transversely holomorphic foliations of complex codimension one with a transversely homogeneous complex transverse structure. We prove that the only cases are the transversely additive, affine and projective cases. We shall focus on the transversely affine case and describe the holonomy of a leaf which is \\\"at the infinity\\\" with respect to this structure and prove this is a solvable group. Using this we are able to prove linearization results for the foliation under the assumption of existence of some hyperbolic map in the holonomy group. Such foliations will then be given by simple-poles closed transversely meromorphic one-forms.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"105 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/pigc.v16i3.2304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/pigc.v16i3.2304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有横向齐次复横向结构的复余维为1的横向全纯叶理。我们证明了只有横向加性、仿射性和射影性的情况。我们将着重于横向仿射的情况,描述一个叶的“在无穷远处”的完整性,并证明它是一个可解群。在完整群中存在双曲映射的假设下,证明了叶理的线性化结果。这样的叶将由单极闭合横向亚纯单形给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On transversely holomorphic foliations with homogeneous transverse structure
In this paper we study transversely holomorphic foliations of complex codimension one with a transversely homogeneous complex transverse structure. We prove that the only cases are the transversely additive, affine and projective cases. We shall focus on the transversely affine case and describe the holonomy of a leaf which is "at the infinity" with respect to this structure and prove this is a solvable group. Using this we are able to prove linearization results for the foliation under the assumption of existence of some hyperbolic map in the holonomy group. Such foliations will then be given by simple-poles closed transversely meromorphic one-forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信