{"title":"时间光栅的史密斯-珀塞尔辐射","authors":"Zhu, Juan-Feng, Nussupbekov, Ayan, Zhou, Wenjie, Song, Zicheng, Wang, Xuchen, Zhang, Zi-Wen, Du, Chao-Hai, Bai, Ping, Png, Ching Eng, Qiu, Cheng-Wei, Wu, Lin","doi":"10.48550/arxiv.2311.07381","DOIUrl":null,"url":null,"abstract":"Smith-Purcell radiation (SPR) occurs when an electron skims above a spatial grating, but the fixed momentum compensation from the static grating imposes limitations on the emission wavelength. It has been discovered that a temporally periodic system can provide energy compensation to generate light emissions in free space. Here, we introduce temporal SPR (t-SPR) emerging from a time grating and propose a generalized t-SPR dispersion equation to predict the relationship between radiation frequency, direction, electron velocity, modulation period, and harmonic orders. Compared to conventional SPR, t-SPR can: 1) Provide a versatile platform for manipulating SPR emission through temporal modulation (e.g., period, amplitude, wave shape). 2) Exhibit strong robustness to the electron-grating separation, alleviating the constraints associated with extreme electron near-field excitation. 3) Introduce additional energy channels through temporal modulation, enhancing and amplifying emission.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"110 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smith-Purcell radiation from time grating\",\"authors\":\"Zhu, Juan-Feng, Nussupbekov, Ayan, Zhou, Wenjie, Song, Zicheng, Wang, Xuchen, Zhang, Zi-Wen, Du, Chao-Hai, Bai, Ping, Png, Ching Eng, Qiu, Cheng-Wei, Wu, Lin\",\"doi\":\"10.48550/arxiv.2311.07381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smith-Purcell radiation (SPR) occurs when an electron skims above a spatial grating, but the fixed momentum compensation from the static grating imposes limitations on the emission wavelength. It has been discovered that a temporally periodic system can provide energy compensation to generate light emissions in free space. Here, we introduce temporal SPR (t-SPR) emerging from a time grating and propose a generalized t-SPR dispersion equation to predict the relationship between radiation frequency, direction, electron velocity, modulation period, and harmonic orders. Compared to conventional SPR, t-SPR can: 1) Provide a versatile platform for manipulating SPR emission through temporal modulation (e.g., period, amplitude, wave shape). 2) Exhibit strong robustness to the electron-grating separation, alleviating the constraints associated with extreme electron near-field excitation. 3) Introduce additional energy channels through temporal modulation, enhancing and amplifying emission.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":\"110 14\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2311.07381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2311.07381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smith-Purcell radiation (SPR) occurs when an electron skims above a spatial grating, but the fixed momentum compensation from the static grating imposes limitations on the emission wavelength. It has been discovered that a temporally periodic system can provide energy compensation to generate light emissions in free space. Here, we introduce temporal SPR (t-SPR) emerging from a time grating and propose a generalized t-SPR dispersion equation to predict the relationship between radiation frequency, direction, electron velocity, modulation period, and harmonic orders. Compared to conventional SPR, t-SPR can: 1) Provide a versatile platform for manipulating SPR emission through temporal modulation (e.g., period, amplitude, wave shape). 2) Exhibit strong robustness to the electron-grating separation, alleviating the constraints associated with extreme electron near-field excitation. 3) Introduce additional energy channels through temporal modulation, enhancing and amplifying emission.