基于几何图神经网络的多移动机器人协同目标跟踪

Lin, Qingquan, Lu, Weining
{"title":"基于几何图神经网络的多移动机器人协同目标跟踪","authors":"Lin, Qingquan, Lu, Weining","doi":"10.48550/arxiv.2311.07105","DOIUrl":null,"url":null,"abstract":"Multi-robot systems are widely used in spatially distributed tasks, and their collaborative path planning is of great significance for working efficiency. Currently, different multi-robot collaborative path planning methods have been proposed, but how to process the sensory information of neighboring robots at different locations from a local perception perspective in real environment to make better decisions is still a major difficulty. To address this problem, this paper proposes a multi-robot collaborative path planning method based on geometric graph neural network (GeoGNN). GeoGNN introduces the relative position information of neighboring robots into each interaction layer of the graph neural network to better integrate neighbor sensing information. An expert data generation method is designed for the robot to advance in a single step, by which expert data are generated in ROS to train the network. Experimental results show that the accuracy of the proposed method is improved by about 5% compared to the model based only on CNN on the expert data set. In ROS simulation environment path planning test, the success rate is improved by about 4% compared to CNN and flowtime increase is reduced about 8%, which outperforms other graph neural network models.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Goal Tracking of Multiple Mobile Robots Based on Geometric\\n Graph Neural Network\",\"authors\":\"Lin, Qingquan, Lu, Weining\",\"doi\":\"10.48550/arxiv.2311.07105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-robot systems are widely used in spatially distributed tasks, and their collaborative path planning is of great significance for working efficiency. Currently, different multi-robot collaborative path planning methods have been proposed, but how to process the sensory information of neighboring robots at different locations from a local perception perspective in real environment to make better decisions is still a major difficulty. To address this problem, this paper proposes a multi-robot collaborative path planning method based on geometric graph neural network (GeoGNN). GeoGNN introduces the relative position information of neighboring robots into each interaction layer of the graph neural network to better integrate neighbor sensing information. An expert data generation method is designed for the robot to advance in a single step, by which expert data are generated in ROS to train the network. Experimental results show that the accuracy of the proposed method is improved by about 5% compared to the model based only on CNN on the expert data set. In ROS simulation environment path planning test, the success rate is improved by about 4% compared to CNN and flowtime increase is reduced about 8%, which outperforms other graph neural network models.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2311.07105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2311.07105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多机器人系统广泛应用于空间分布式任务,其协同路径规划对提高工作效率具有重要意义。目前,已经提出了不同的多机器人协同路径规划方法,但如何在真实环境中从局部感知的角度处理不同位置相邻机器人的感知信息以做出更好的决策仍然是一个主要难点。针对这一问题,提出了一种基于几何图神经网络(GeoGNN)的多机器人协同路径规划方法。GeoGNN将相邻机器人的相对位置信息引入到图神经网络的每个交互层中,以更好地整合相邻感知信息。设计了一种单步推进的专家数据生成方法,通过在ROS中生成专家数据对网络进行训练。实验结果表明,与专家数据集上仅基于CNN的模型相比,该方法的准确率提高了约5%。在ROS仿真环境下的路径规划测试中,与CNN相比,成功率提高了约4%,流时间增加减少了约8%,优于其他图神经网络模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Goal Tracking of Multiple Mobile Robots Based on Geometric Graph Neural Network
Multi-robot systems are widely used in spatially distributed tasks, and their collaborative path planning is of great significance for working efficiency. Currently, different multi-robot collaborative path planning methods have been proposed, but how to process the sensory information of neighboring robots at different locations from a local perception perspective in real environment to make better decisions is still a major difficulty. To address this problem, this paper proposes a multi-robot collaborative path planning method based on geometric graph neural network (GeoGNN). GeoGNN introduces the relative position information of neighboring robots into each interaction layer of the graph neural network to better integrate neighbor sensing information. An expert data generation method is designed for the robot to advance in a single step, by which expert data are generated in ROS to train the network. Experimental results show that the accuracy of the proposed method is improved by about 5% compared to the model based only on CNN on the expert data set. In ROS simulation environment path planning test, the success rate is improved by about 4% compared to CNN and flowtime increase is reduced about 8%, which outperforms other graph neural network models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信