氧化诱导降解对氢燃料微涡轮材料的影响

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Marie Romedenne, Rishi Pillai, Sebastien Dryepondt, Bruce A. Pint
{"title":"氧化诱导降解对氢燃料微涡轮材料的影响","authors":"Marie Romedenne, Rishi Pillai, Sebastien Dryepondt, Bruce A. Pint","doi":"10.1115/1.4063705","DOIUrl":null,"url":null,"abstract":"Abstract Hydrogen-fueled microturbines are being considered as part of the future green microgrid. However, the use of hydrogen as a fuel presents new challenges for selection and development of suitable high temperature materials for hydrogen combustion. The burning of hydrogen is expected to result in higher operating temperatures and higher than typically observed water vapor contents in exhaust gases versus burning natural gas. In the present work, foil specimens of various Fe- and Ni-based alloys were oxidized in air + 10 % H2O and air + 60% H2O for up to 5,000 h at 700 °C to simulate the exhaust atmosphere of natural gas and hydrogen-fueled microturbines. The impact of alloy composition and water vapor content on the oxidation/ volatilization induced loss of wall thickness was experimentally evaluated. Enhanced external oxidation and volatilization of Cr2O3 and Ti-doped Cr2O3 scales was observed in air + 60% H2O compared to air + 10% H2O. No significant impact of the higher water vapor content was observed on Al2O3 scales formed on Fe-based alumina forming alloys. Lifetime modeling was employed to predict the combined effects of water vapor content, gas flow rates, temperature and alloy composition on the oxidation-induced lifetime of the investigated materials.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":"29 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Oxidation-Induced Degradation On Materials Used in Hydrogen-Fired Microturbines\",\"authors\":\"Marie Romedenne, Rishi Pillai, Sebastien Dryepondt, Bruce A. Pint\",\"doi\":\"10.1115/1.4063705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hydrogen-fueled microturbines are being considered as part of the future green microgrid. However, the use of hydrogen as a fuel presents new challenges for selection and development of suitable high temperature materials for hydrogen combustion. The burning of hydrogen is expected to result in higher operating temperatures and higher than typically observed water vapor contents in exhaust gases versus burning natural gas. In the present work, foil specimens of various Fe- and Ni-based alloys were oxidized in air + 10 % H2O and air + 60% H2O for up to 5,000 h at 700 °C to simulate the exhaust atmosphere of natural gas and hydrogen-fueled microturbines. The impact of alloy composition and water vapor content on the oxidation/ volatilization induced loss of wall thickness was experimentally evaluated. Enhanced external oxidation and volatilization of Cr2O3 and Ti-doped Cr2O3 scales was observed in air + 60% H2O compared to air + 10% H2O. No significant impact of the higher water vapor content was observed on Al2O3 scales formed on Fe-based alumina forming alloys. Lifetime modeling was employed to predict the combined effects of water vapor content, gas flow rates, temperature and alloy composition on the oxidation-induced lifetime of the investigated materials.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063705\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063705","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

氢燃料微型涡轮机被认为是未来绿色微电网的一部分。然而,氢作为燃料的使用为选择和开发适合氢燃烧的高温材料提出了新的挑战。与燃烧天然气相比,氢的燃烧预计会导致更高的工作温度,并且比通常观察到的废气中的水蒸气含量更高。在本研究中,采用空气+ 10% H2O和空气+ 60% H2O在700℃下氧化各种铁基和镍基合金箔试样5000 h来模拟天然气和氢燃料微型涡轮机的排气环境。实验研究了合金成分和水蒸气含量对氧化/挥发引起的壁厚损失的影响。与空气+ 10% H2O相比,空气+ 60% H2O中Cr2O3和ti掺杂Cr2O3鳞片的外部氧化和挥发增强。水蒸气含量的增加对铁基氧化铝成形合金上形成的Al2O3结垢没有显著影响。利用寿命模型预测了水蒸气含量、气体流速、温度和合金成分对材料氧化寿命的综合影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impact of Oxidation-Induced Degradation On Materials Used in Hydrogen-Fired Microturbines
Abstract Hydrogen-fueled microturbines are being considered as part of the future green microgrid. However, the use of hydrogen as a fuel presents new challenges for selection and development of suitable high temperature materials for hydrogen combustion. The burning of hydrogen is expected to result in higher operating temperatures and higher than typically observed water vapor contents in exhaust gases versus burning natural gas. In the present work, foil specimens of various Fe- and Ni-based alloys were oxidized in air + 10 % H2O and air + 60% H2O for up to 5,000 h at 700 °C to simulate the exhaust atmosphere of natural gas and hydrogen-fueled microturbines. The impact of alloy composition and water vapor content on the oxidation/ volatilization induced loss of wall thickness was experimentally evaluated. Enhanced external oxidation and volatilization of Cr2O3 and Ti-doped Cr2O3 scales was observed in air + 60% H2O compared to air + 10% H2O. No significant impact of the higher water vapor content was observed on Al2O3 scales formed on Fe-based alumina forming alloys. Lifetime modeling was employed to predict the combined effects of water vapor content, gas flow rates, temperature and alloy composition on the oxidation-induced lifetime of the investigated materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
20.00%
发文量
292
审稿时长
2.0 months
期刊介绍: The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信