最小化的Onsager-Machlup功能强后验模式?

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Remo Kretschmann
{"title":"最小化的Onsager-Machlup功能强后验模式?","authors":"Remo Kretschmann","doi":"10.1137/23m1546579","DOIUrl":null,"url":null,"abstract":"In this work we connect two notions: That of the nonparametric mode of a probability measure, defined by asymptotic small ball probabilities, and that of the Onsager-Machlup functional, a generalized density also defined via asymptotic small ball probabilities. We show that in a separable Hilbert space setting and under mild conditions on the likelihood, modes of a Bayesian posterior distribution based upon a Gaussian prior exist and agree with the minimizers of its Onsager-Machlup functional and thus also with weak posterior modes. We apply this result to inverse problems and derive conditions on the forward mapping under which this variational characterization of posterior modes holds. Our results show rigorously that in the limit case of infinite-dimensional data corrupted by additive Gaussian or Laplacian noise, nonparametric maximum a posteriori estimation is equivalent to Tikhonov-Phillips regularization. In comparison with the work of Dashti, Law, Stuart, and Voss (2013), the assumptions on the likelihood are relaxed so that they cover in particular the important case of white Gaussian process noise. We illustrate our results by applying them to a severely ill-posed linear problem with Laplacian noise, where we express the maximum a posteriori estimator analytically and study its rate of convergence in the small noise limit.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Are Minimizers of the Onsager–Machlup Functional Strong Posterior Modes?\",\"authors\":\"Remo Kretschmann\",\"doi\":\"10.1137/23m1546579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we connect two notions: That of the nonparametric mode of a probability measure, defined by asymptotic small ball probabilities, and that of the Onsager-Machlup functional, a generalized density also defined via asymptotic small ball probabilities. We show that in a separable Hilbert space setting and under mild conditions on the likelihood, modes of a Bayesian posterior distribution based upon a Gaussian prior exist and agree with the minimizers of its Onsager-Machlup functional and thus also with weak posterior modes. We apply this result to inverse problems and derive conditions on the forward mapping under which this variational characterization of posterior modes holds. Our results show rigorously that in the limit case of infinite-dimensional data corrupted by additive Gaussian or Laplacian noise, nonparametric maximum a posteriori estimation is equivalent to Tikhonov-Phillips regularization. In comparison with the work of Dashti, Law, Stuart, and Voss (2013), the assumptions on the likelihood are relaxed so that they cover in particular the important case of white Gaussian process noise. We illustrate our results by applying them to a severely ill-posed linear problem with Laplacian noise, where we express the maximum a posteriori estimator analytically and study its rate of convergence in the small noise limit.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1546579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m1546579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are Minimizers of the Onsager–Machlup Functional Strong Posterior Modes?
In this work we connect two notions: That of the nonparametric mode of a probability measure, defined by asymptotic small ball probabilities, and that of the Onsager-Machlup functional, a generalized density also defined via asymptotic small ball probabilities. We show that in a separable Hilbert space setting and under mild conditions on the likelihood, modes of a Bayesian posterior distribution based upon a Gaussian prior exist and agree with the minimizers of its Onsager-Machlup functional and thus also with weak posterior modes. We apply this result to inverse problems and derive conditions on the forward mapping under which this variational characterization of posterior modes holds. Our results show rigorously that in the limit case of infinite-dimensional data corrupted by additive Gaussian or Laplacian noise, nonparametric maximum a posteriori estimation is equivalent to Tikhonov-Phillips regularization. In comparison with the work of Dashti, Law, Stuart, and Voss (2013), the assumptions on the likelihood are relaxed so that they cover in particular the important case of white Gaussian process noise. We illustrate our results by applying them to a severely ill-posed linear problem with Laplacian noise, where we express the maximum a posteriori estimator analytically and study its rate of convergence in the small noise limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信