过渡金属二硫化物单层拓扑绝缘体的温度效应

Chen, Siyu, Parker, Isaac J., Monserrat, Bartomeu
{"title":"过渡金属二硫化物单层拓扑绝缘体的温度效应","authors":"Chen, Siyu, Parker, Isaac J., Monserrat, Bartomeu","doi":"10.48550/arxiv.2311.07473","DOIUrl":null,"url":null,"abstract":"We investigate the role of temperature on the topological insulating state of metal dichalcogenide monolayers, 1T$^\\prime$-MX$_2$ (M=W, Mo and X=S, Se). Using first principles calculations based on density functional theory, we consider three temperature-related contributions to the topological band gap: electrons coupling with short-wavelength phonons, with long-wavelength phonons \\textit{via} Fr\\\"ohlich coupling, and thermal expansion. We find that electron-phonon coupling promotes the topology of the electronic structures of all 1T$^\\prime$-MX$_2$ monolayers, while thermal expansion acts as a counteracting effect. Additionally, we derive the band renormalization from Fr\\\"ohlich coupling in the two-dimensional context and observe its relatively modest contribution to 1T$^\\prime$-MX$_2$ monolayers. Finally, we present a simplified physical picture to understand the \"inverse Varshni\" effect driven by band inversion in topological insulators. Our work reveals that, among the four 1T$^\\prime$-MX$_2$ studied monolayers, MoSe$_2$ is a promising candidate for room temperature applications as its band gap displays remarkable resilience against thermal expansion, while the topological order of WS$_2$ can be tuned under the combined influence of strain and temperature. Both materials represent novel examples of temperature promoted topological insulators.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature effects in topological insulators of transition metal\\n dichalcogenide monolayers\",\"authors\":\"Chen, Siyu, Parker, Isaac J., Monserrat, Bartomeu\",\"doi\":\"10.48550/arxiv.2311.07473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the role of temperature on the topological insulating state of metal dichalcogenide monolayers, 1T$^\\\\prime$-MX$_2$ (M=W, Mo and X=S, Se). Using first principles calculations based on density functional theory, we consider three temperature-related contributions to the topological band gap: electrons coupling with short-wavelength phonons, with long-wavelength phonons \\\\textit{via} Fr\\\\\\\"ohlich coupling, and thermal expansion. We find that electron-phonon coupling promotes the topology of the electronic structures of all 1T$^\\\\prime$-MX$_2$ monolayers, while thermal expansion acts as a counteracting effect. Additionally, we derive the band renormalization from Fr\\\\\\\"ohlich coupling in the two-dimensional context and observe its relatively modest contribution to 1T$^\\\\prime$-MX$_2$ monolayers. Finally, we present a simplified physical picture to understand the \\\"inverse Varshni\\\" effect driven by band inversion in topological insulators. Our work reveals that, among the four 1T$^\\\\prime$-MX$_2$ studied monolayers, MoSe$_2$ is a promising candidate for room temperature applications as its band gap displays remarkable resilience against thermal expansion, while the topological order of WS$_2$ can be tuned under the combined influence of strain and temperature. Both materials represent novel examples of temperature promoted topological insulators.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2311.07473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2311.07473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了温度对金属二硫化物单层1T $^\prime$ -MX $_2$ (M=W, Mo和X=S, Se)拓扑绝缘状态的影响。利用基于密度泛函理论的第一性原理计算,我们考虑了三种与温度相关的拓扑带隙贡献:电子与短波声子的耦合,\textit{通过}Fröhlich耦合与长波声子的耦合,以及热膨胀。我们发现电子-声子耦合促进了所有1T $^\prime$ -MX $_2$单层电子结构的拓扑结构,而热膨胀起抵消作用。此外,我们在二维环境下推导了Fröhlich耦合的带重整化,并观察到它对1T $^\prime$ -MX $_2$单层膜的贡献相对较小。最后,我们给出了一个简化的物理图来理解拓扑绝缘体中由能带反转驱动的“逆Varshni”效应。我们的工作表明,在所研究的四种1T $^\prime$ -MX $_2$单分子层中,MoSe $_2$是室温应用的有希望的候选者,因为它的带隙具有显着的抗热膨胀弹性,而WS $_2$的拓扑顺序可以在应变和温度的综合影响下进行调整。这两种材料都代表了温度提升拓扑绝缘体的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature effects in topological insulators of transition metal dichalcogenide monolayers
We investigate the role of temperature on the topological insulating state of metal dichalcogenide monolayers, 1T$^\prime$-MX$_2$ (M=W, Mo and X=S, Se). Using first principles calculations based on density functional theory, we consider three temperature-related contributions to the topological band gap: electrons coupling with short-wavelength phonons, with long-wavelength phonons \textit{via} Fr\"ohlich coupling, and thermal expansion. We find that electron-phonon coupling promotes the topology of the electronic structures of all 1T$^\prime$-MX$_2$ monolayers, while thermal expansion acts as a counteracting effect. Additionally, we derive the band renormalization from Fr\"ohlich coupling in the two-dimensional context and observe its relatively modest contribution to 1T$^\prime$-MX$_2$ monolayers. Finally, we present a simplified physical picture to understand the "inverse Varshni" effect driven by band inversion in topological insulators. Our work reveals that, among the four 1T$^\prime$-MX$_2$ studied monolayers, MoSe$_2$ is a promising candidate for room temperature applications as its band gap displays remarkable resilience against thermal expansion, while the topological order of WS$_2$ can be tuned under the combined influence of strain and temperature. Both materials represent novel examples of temperature promoted topological insulators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信