平面分区和在矩形和梯形上的移动

Johnson, Joseph, Liu, Ricky Ini
{"title":"平面分区和在矩形和梯形上的移动","authors":"Johnson, Joseph, Liu, Ricky Ini","doi":"10.48550/arxiv.2311.07133","DOIUrl":null,"url":null,"abstract":"We define a birational map between labelings of a rectangular poset and its associated trapezoidal poset. This map tropicalizes to a bijection between the plane partitions of these posets of fixed height, giving a new bijective proof of a result by Proctor. We also show that this map is equivariant with respect to birational rowmotion, resolving a conjecture of Williams and implying that birational rowmotion on trapezoidal posets has finite order.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plane partitions and rowmotion on rectangular and trapezoidal posets\",\"authors\":\"Johnson, Joseph, Liu, Ricky Ini\",\"doi\":\"10.48550/arxiv.2311.07133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a birational map between labelings of a rectangular poset and its associated trapezoidal poset. This map tropicalizes to a bijection between the plane partitions of these posets of fixed height, giving a new bijective proof of a result by Proctor. We also show that this map is equivariant with respect to birational rowmotion, resolving a conjecture of Williams and implying that birational rowmotion on trapezoidal posets has finite order.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2311.07133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2311.07133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了一个矩形偏序集和它的关联的梯形偏序集的标记之间的双向映射。这张图热带化为这些固定高度的偏置集的平面分区之间的双射,给出了Proctor结果的一个新的双射证明。我们还证明了该映射对于两族运动是等变的,解决了Williams的一个猜想,并暗示了梯形偏集上的两族运动具有有限阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plane partitions and rowmotion on rectangular and trapezoidal posets
We define a birational map between labelings of a rectangular poset and its associated trapezoidal poset. This map tropicalizes to a bijection between the plane partitions of these posets of fixed height, giving a new bijective proof of a result by Proctor. We also show that this map is equivariant with respect to birational rowmotion, resolving a conjecture of Williams and implying that birational rowmotion on trapezoidal posets has finite order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信