基于非参数估计的自发性脑机接口样本优势感知框架

Lee, Byeong-Hoo, Kwon, Byoung-Hee, Lee, Seong-Whan
{"title":"基于非参数估计的自发性脑机接口样本优势感知框架","authors":"Lee, Byeong-Hoo, Kwon, Byoung-Hee, Lee, Seong-Whan","doi":"10.48550/arxiv.2311.07079","DOIUrl":null,"url":null,"abstract":"Deep learning has shown promise in decoding brain signals, such as electroencephalogram (EEG), in the field of brain-computer interfaces (BCIs). However, the non-stationary characteristics of EEG signals pose challenges for training neural networks to acquire appropriate knowledge. Inconsistent EEG signals resulting from these non-stationary characteristics can lead to poor performance. Therefore, it is crucial to investigate and address sample inconsistency to ensure robust performance in spontaneous BCIs. In this study, we introduce the concept of sample dominance as a measure of EEG signal inconsistency and propose a method to modulate its effect on network training. We present a two-stage dominance score estimation technique that compensates for performance degradation caused by sample inconsistencies. Our proposed method utilizes non-parametric estimation to infer sample inconsistency and assigns each sample a dominance score. This score is then aggregated with the loss function during training to modulate the impact of sample inconsistency. Furthermore, we design a curriculum learning approach that gradually increases the influence of inconsistent signals during training to improve overall performance. We evaluate our proposed method using public spontaneous BCI dataset. The experimental results confirm that our findings highlight the importance of addressing sample dominance for achieving robust performance in spontaneous BCIs.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample Dominance Aware Framework via Non-Parametric Estimation for\\n Spontaneous Brain-Computer Interface\",\"authors\":\"Lee, Byeong-Hoo, Kwon, Byoung-Hee, Lee, Seong-Whan\",\"doi\":\"10.48550/arxiv.2311.07079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has shown promise in decoding brain signals, such as electroencephalogram (EEG), in the field of brain-computer interfaces (BCIs). However, the non-stationary characteristics of EEG signals pose challenges for training neural networks to acquire appropriate knowledge. Inconsistent EEG signals resulting from these non-stationary characteristics can lead to poor performance. Therefore, it is crucial to investigate and address sample inconsistency to ensure robust performance in spontaneous BCIs. In this study, we introduce the concept of sample dominance as a measure of EEG signal inconsistency and propose a method to modulate its effect on network training. We present a two-stage dominance score estimation technique that compensates for performance degradation caused by sample inconsistencies. Our proposed method utilizes non-parametric estimation to infer sample inconsistency and assigns each sample a dominance score. This score is then aggregated with the loss function during training to modulate the impact of sample inconsistency. Furthermore, we design a curriculum learning approach that gradually increases the influence of inconsistent signals during training to improve overall performance. We evaluate our proposed method using public spontaneous BCI dataset. The experimental results confirm that our findings highlight the importance of addressing sample dominance for achieving robust performance in spontaneous BCIs.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2311.07079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2311.07079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在脑机接口(bci)领域,深度学习在解码脑信号(如脑电图(EEG))方面显示出了前景。然而,脑电信号的非平稳特性给训练神经网络获取适当的知识带来了挑战。这些非平稳特征导致的脑电信号不一致会导致性能不佳。因此,至关重要的是调查和解决样本不一致,以确保自发脑机接口的稳健性能。在本研究中,我们引入了样本优势的概念作为脑电信号不一致性的度量,并提出了一种方法来调节其对网络训练的影响。我们提出了一个两阶段的优势得分估计技术,以补偿由样本不一致引起的性能下降。我们提出的方法利用非参数估计来推断样本的不一致性,并为每个样本分配一个优势分数。然后在训练期间将该分数与损失函数汇总,以调节样本不一致的影响。此外,我们设计了一种课程学习方法,在训练过程中逐渐增加不一致信号的影响,以提高整体性能。我们使用公共自发BCI数据集来评估我们提出的方法。实验结果证实,我们的研究结果强调了解决样本优势对于实现自发脑机接口的稳健性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sample Dominance Aware Framework via Non-Parametric Estimation for Spontaneous Brain-Computer Interface
Deep learning has shown promise in decoding brain signals, such as electroencephalogram (EEG), in the field of brain-computer interfaces (BCIs). However, the non-stationary characteristics of EEG signals pose challenges for training neural networks to acquire appropriate knowledge. Inconsistent EEG signals resulting from these non-stationary characteristics can lead to poor performance. Therefore, it is crucial to investigate and address sample inconsistency to ensure robust performance in spontaneous BCIs. In this study, we introduce the concept of sample dominance as a measure of EEG signal inconsistency and propose a method to modulate its effect on network training. We present a two-stage dominance score estimation technique that compensates for performance degradation caused by sample inconsistencies. Our proposed method utilizes non-parametric estimation to infer sample inconsistency and assigns each sample a dominance score. This score is then aggregated with the loss function during training to modulate the impact of sample inconsistency. Furthermore, we design a curriculum learning approach that gradually increases the influence of inconsistent signals during training to improve overall performance. We evaluate our proposed method using public spontaneous BCI dataset. The experimental results confirm that our findings highlight the importance of addressing sample dominance for achieving robust performance in spontaneous BCIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信