Jack Wiggins, Diane Baum, Annette C. Broderick, Tobias Capel, Liliana P. Colman, Toby Hunt, Daisy Lomas Simmons, James McGurk, Lucy Mortlock, Rebecca Nightingale, Nicola Weber, Sam B. Weber
{"title":"人工筑巢遮荫对阿森松岛海龟适应气候变化的影响","authors":"Jack Wiggins, Diane Baum, Annette C. Broderick, Tobias Capel, Liliana P. Colman, Toby Hunt, Daisy Lomas Simmons, James McGurk, Lucy Mortlock, Rebecca Nightingale, Nicola Weber, Sam B. Weber","doi":"10.1002/wsb.1497","DOIUrl":null,"url":null,"abstract":"Abstract Successful embryonic development and offspring sex ratios of marine turtles are determined by thermal conditions experienced during incubation, rendering them potentially vulnerable to anthropogenic climate change. With the rate of projected temperature rises likely to outpace the adaptive capacity of long‐lived species such as marine turtles, there is growing interest in management interventions aimed at mitigating the effects of climate change at nesting grounds. In this study, we experimentally tested the impacts of artificial nest shading on the incubation temperature, hatching success, and predicted offspring sex ratio of green turtle ( Chelonia mydas ) clutches at Ascension Island. Clutches ( n = 97) were sampled from 2 nesting beaches with naturally contrasting thermal environments (one hot; one cool) and either left as in situ controls or relocated to shaded or unshaded hatcheries on their beach of origin. Compared to unshaded experimental clutches, shading reduced mean incubation temperatures and sex‐determining temperatures (i.e., middle third of embryonic development) by 0.5–0.9°C and 0.5–1.2°C respectively, with the reduction being greater on the hotter beach. Shading also differentially affected hatchling output across the 2 sites: on the hot beach, shading significantly improved hatching success by ~23% but had minimal effects on offspring sex ratio; whereas on the cooler beach, shading did not impact hatching success but resulted in ~12% more male offspring. Interestingly, mean incubation temperatures of in situ controls did not differ significantly from shaded clutches, and were significantly cooler than unshaded experimental clutches, suggesting relocation may have negated some of the benefits of shading. Our results demonstrated that artificial shading may be a viable approach for partially offsetting climate change impacts on nesting marine turtles; however, scalability will be a major challenge in achieving conservation objectives at high‐density nesting sites like Ascension Island.","PeriodicalId":23845,"journal":{"name":"Wildlife Society Bulletin","volume":"129 32","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of artificial nest shading as a climate change adaptation measure for marine turtles at Ascension Island\",\"authors\":\"Jack Wiggins, Diane Baum, Annette C. Broderick, Tobias Capel, Liliana P. Colman, Toby Hunt, Daisy Lomas Simmons, James McGurk, Lucy Mortlock, Rebecca Nightingale, Nicola Weber, Sam B. Weber\",\"doi\":\"10.1002/wsb.1497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Successful embryonic development and offspring sex ratios of marine turtles are determined by thermal conditions experienced during incubation, rendering them potentially vulnerable to anthropogenic climate change. With the rate of projected temperature rises likely to outpace the adaptive capacity of long‐lived species such as marine turtles, there is growing interest in management interventions aimed at mitigating the effects of climate change at nesting grounds. In this study, we experimentally tested the impacts of artificial nest shading on the incubation temperature, hatching success, and predicted offspring sex ratio of green turtle ( Chelonia mydas ) clutches at Ascension Island. Clutches ( n = 97) were sampled from 2 nesting beaches with naturally contrasting thermal environments (one hot; one cool) and either left as in situ controls or relocated to shaded or unshaded hatcheries on their beach of origin. Compared to unshaded experimental clutches, shading reduced mean incubation temperatures and sex‐determining temperatures (i.e., middle third of embryonic development) by 0.5–0.9°C and 0.5–1.2°C respectively, with the reduction being greater on the hotter beach. Shading also differentially affected hatchling output across the 2 sites: on the hot beach, shading significantly improved hatching success by ~23% but had minimal effects on offspring sex ratio; whereas on the cooler beach, shading did not impact hatching success but resulted in ~12% more male offspring. Interestingly, mean incubation temperatures of in situ controls did not differ significantly from shaded clutches, and were significantly cooler than unshaded experimental clutches, suggesting relocation may have negated some of the benefits of shading. Our results demonstrated that artificial shading may be a viable approach for partially offsetting climate change impacts on nesting marine turtles; however, scalability will be a major challenge in achieving conservation objectives at high‐density nesting sites like Ascension Island.\",\"PeriodicalId\":23845,\"journal\":{\"name\":\"Wildlife Society Bulletin\",\"volume\":\"129 32\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wildlife Society Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wsb.1497\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wildlife Society Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsb.1497","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Efficacy of artificial nest shading as a climate change adaptation measure for marine turtles at Ascension Island
Abstract Successful embryonic development and offspring sex ratios of marine turtles are determined by thermal conditions experienced during incubation, rendering them potentially vulnerable to anthropogenic climate change. With the rate of projected temperature rises likely to outpace the adaptive capacity of long‐lived species such as marine turtles, there is growing interest in management interventions aimed at mitigating the effects of climate change at nesting grounds. In this study, we experimentally tested the impacts of artificial nest shading on the incubation temperature, hatching success, and predicted offspring sex ratio of green turtle ( Chelonia mydas ) clutches at Ascension Island. Clutches ( n = 97) were sampled from 2 nesting beaches with naturally contrasting thermal environments (one hot; one cool) and either left as in situ controls or relocated to shaded or unshaded hatcheries on their beach of origin. Compared to unshaded experimental clutches, shading reduced mean incubation temperatures and sex‐determining temperatures (i.e., middle third of embryonic development) by 0.5–0.9°C and 0.5–1.2°C respectively, with the reduction being greater on the hotter beach. Shading also differentially affected hatchling output across the 2 sites: on the hot beach, shading significantly improved hatching success by ~23% but had minimal effects on offspring sex ratio; whereas on the cooler beach, shading did not impact hatching success but resulted in ~12% more male offspring. Interestingly, mean incubation temperatures of in situ controls did not differ significantly from shaded clutches, and were significantly cooler than unshaded experimental clutches, suggesting relocation may have negated some of the benefits of shading. Our results demonstrated that artificial shading may be a viable approach for partially offsetting climate change impacts on nesting marine turtles; however, scalability will be a major challenge in achieving conservation objectives at high‐density nesting sites like Ascension Island.
期刊介绍:
The Wildlife Society Bulletin is a journal for wildlife practitioners that effectively integrates cutting edge science with management and conservation, and also covers important policy issues, particularly those that focus on the integration of science and policy. Wildlife Society Bulletin includes articles on contemporary wildlife management and conservation, education, administration, law enforcement, and review articles on the philosophy and history of wildlife management and conservation. This includes:
Reports on practices designed to achieve wildlife management or conservation goals.
Presentation of new techniques or evaluation of techniques for studying or managing wildlife.
Retrospective analyses of wildlife management and conservation programs, including the reasons for success or failure.
Analyses or reports of wildlife policies, regulations, education, administration, law enforcement.
Review articles on the philosophy and history of wildlife management and conservation. as well as other pertinent topics that are deemed more appropriate for the Wildlife Society Bulletin than for The Journal of Wildlife Management.
Book reviews that focus on applied research, policy or wildlife management and conservation.