英语Reddit帖子自我报告社交焦虑障碍诊断的二元分类

Sharandeep Singh, Jatin Bedi
{"title":"英语Reddit帖子自我报告社交焦虑障碍诊断的二元分类","authors":"Sharandeep Singh, Jatin Bedi","doi":"10.1101/2023.11.10.23298362","DOIUrl":null,"url":null,"abstract":"This paper presents the system developed by Team ThaparUni for the Social Media Mining for Health Applications (SMM4H) 2023 Shared Task 4. The task involved binary classification of English Reddit posts, focusing on self-reporting social anxiety disorder (SAD) diagnoses. The final system employed a combination of three models: RoBERTa, ERNIE, and XLNet, and results obtained from all three models were integrated. The results, specifically in the context of mental health-related content analysis on social media platforms, show the possibility and viability of using multiple models in binary classification tasks.","PeriodicalId":478577,"journal":{"name":"medRxiv (Cold Spring Harbor Laboratory)","volume":"19 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary classification of English Reddit posts self-reporting a social anxiety disorder diagnosis\",\"authors\":\"Sharandeep Singh, Jatin Bedi\",\"doi\":\"10.1101/2023.11.10.23298362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the system developed by Team ThaparUni for the Social Media Mining for Health Applications (SMM4H) 2023 Shared Task 4. The task involved binary classification of English Reddit posts, focusing on self-reporting social anxiety disorder (SAD) diagnoses. The final system employed a combination of three models: RoBERTa, ERNIE, and XLNet, and results obtained from all three models were integrated. The results, specifically in the context of mental health-related content analysis on social media platforms, show the possibility and viability of using multiple models in binary classification tasks.\",\"PeriodicalId\":478577,\"journal\":{\"name\":\"medRxiv (Cold Spring Harbor Laboratory)\",\"volume\":\"19 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv (Cold Spring Harbor Laboratory)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.10.23298362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.10.23298362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了由ThaparUni团队为社交媒体挖掘健康应用(SMM4H) 2023共享任务4开发的系统。这项任务包括对英语Reddit帖子进行二元分类,重点是自我报告的社交焦虑障碍(SAD)诊断。最后的系统采用RoBERTa、ERNIE和XLNet三个模型的组合,并且从三个模型得到的结果是综合的。结果,特别是在社交媒体平台上与心理健康相关的内容分析的背景下,显示了在二元分类任务中使用多种模型的可能性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary classification of English Reddit posts self-reporting a social anxiety disorder diagnosis
This paper presents the system developed by Team ThaparUni for the Social Media Mining for Health Applications (SMM4H) 2023 Shared Task 4. The task involved binary classification of English Reddit posts, focusing on self-reporting social anxiety disorder (SAD) diagnoses. The final system employed a combination of three models: RoBERTa, ERNIE, and XLNet, and results obtained from all three models were integrated. The results, specifically in the context of mental health-related content analysis on social media platforms, show the possibility and viability of using multiple models in binary classification tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信