一个可数元胞拓扑群,其所有可数子集都是闭的,不必是$\mathbb{R}$-可因数的

IF 0.2 Q4 MATHEMATICS
Mikhail  Tkachenko
{"title":"一个可数元胞拓扑群,其所有可数子集都是闭的,不必是$\\mathbb{R}$-可因数的","authors":"Mikhail  Tkachenko","doi":"10.14712/1213-7243.2023.016","DOIUrl":null,"url":null,"abstract":"We construct a Hausdorff topological group $G$ such that $\\aleph_1$ is a precalibre of $G$ (hence, $G$ has countable cellularity), all countable subsets of $G$ are closed and $C$-embedded in $G$, but $G$ is not $\\mathbb{R}$-factorizable. This solves Problem 8.6.3 from the book ``Topological Groups and Related Structures\" (2008) in the negative.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":"32 6","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A countably cellular topological group all of whose countable subsets are closed need not be $\\\\mathbb{R}$-factorizable\",\"authors\":\"Mikhail  Tkachenko\",\"doi\":\"10.14712/1213-7243.2023.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a Hausdorff topological group $G$ such that $\\\\aleph_1$ is a precalibre of $G$ (hence, $G$ has countable cellularity), all countable subsets of $G$ are closed and $C$-embedded in $G$, but $G$ is not $\\\\mathbb{R}$-factorizable. This solves Problem 8.6.3 from the book ``Topological Groups and Related Structures\\\" (2008) in the negative.\",\"PeriodicalId\":44396,\"journal\":{\"name\":\"Commentationes Mathematicae Universitatis Carolinae\",\"volume\":\"32 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentationes Mathematicae Universitatis Carolinae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14712/1213-7243.2023.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2023.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

构造了一个Hausdorff拓扑群$G$,使得$G$是$G$的不定数(因此,$G$具有可数胞性),$G$的所有可数子集都是闭的,$C$-嵌入在$G$中,但$G$不是$\mathbb{R}$-可因数的。这就从反面解决了《拓扑群与相关结构》(2008)一书中的8.6.3题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A countably cellular topological group all of whose countable subsets are closed need not be $\mathbb{R}$-factorizable
We construct a Hausdorff topological group $G$ such that $\aleph_1$ is a precalibre of $G$ (hence, $G$ has countable cellularity), all countable subsets of $G$ are closed and $C$-embedded in $G$, but $G$ is not $\mathbb{R}$-factorizable. This solves Problem 8.6.3 from the book ``Topological Groups and Related Structures" (2008) in the negative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信